

Progetto Ematologia-Romagna

Con il patrocinio di

SIE - Società Italiana di Ematologia SIES - Società Italiana di Ematologia Sperimentale

Comune di Ravenna

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA TIMINTO DI MEDIONA SPECIALISTICA PRACENDATICA ESPERIMENTALE

CAR-T: una nuova frontiera terapeutica nel mieloma multiplo

Elena Zamagni

Seràgnoli Institute of Hematology Bologna University School of Medicine

ALMA MATER STUDIORUM Università di Bologna

T-cells and MM and GVM effect

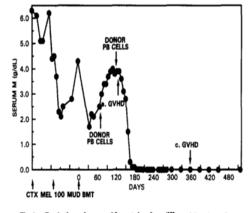
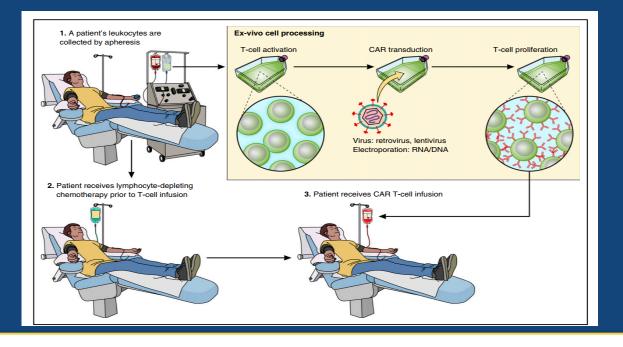


Fig 1. Evolution of serum M protein after different treatment modalities, graft versus myeloma effect. Day 0 is the day of the matched unrelated donor (MUD) BMT. CTX, high-dose cyclophosphamide (6 g/m²); MEL 100, high-dose melphalan 100 mg/m².

Date	Procedure	Clinical variable		
		Serum M protein (g/L)	Bone marrow plasma cells (%)	
April, 1992	BMT	32	55	
August, 1992	Evaluation	Absent+	8‡	
December, 1992	Evaluation	4	ND	
July, 1993	Evaluation	13	15	
October, 1993	Infusions	20	40	
January, 1994	Evaluation	8	2\$	
May, 1994	Evaluation	Absent†	<1§	
October, 1994	Evaluation	Absent†	<1§	
March, 1995	Evaluation	Absent†	<1§	
September, 1995	Evaluation	Absent†	<1§	

*In bilateral biopsy samples and aspirates. †Analysed by immunofixation in serum and in 10 × concentrated urine. ‡Merely IgA/lambda-positive plasma cells. §Polycional plasma cells (normal κ/λ ratio within IgA). ND=not done

Table 1: Response of the multiple myeloma (IgA/lambda) in patient 1 before and after donor leucocyte infusions


- Cytotoxic T lymphocytes (CTL) can mediate antitumoral immunity in an HLA- dependent way
- The presence of TILs represents a positive prognostic factor; however tumor induces T cell exhaustion
- Long-term remissions with allogeneic SCT / responses with donor lymphocyte infusions suggest graftversus-myeloma effect mediated by donor T-cells at cost of GVHD, infections and TRM
- New options of T-cell-mediated immunotherapy are needed

PRESENTED A

Tricot Blood 1996 1196; Verdonck Lancet 1996 800; Lokhorst Blood 2004 4362; Van De Donk BMT 2006 1135

Novel immunotherapies in MM: adoptive T-cell therapy

- Expansion of tumor-infiltrating lymphocytes (TILs) / BM-infiltrating lymphocytes (MILs)
- Immune cells engineered to possess high-affinity receptors specific for particular antigens expressed on tumor cells
- Gene transfer of chimeric antigen receptor by lentiviral or retroviral trasduction

PRESENTED A

June Sci Trans Med 2015; Noonan Sci Transl Med 2015; Linette Blood 2013; Rapoport Nat Med 2015; Ghosh Leuk Lymph 2017

CAR-T (chimeric antigen receptor-T cells) Structure and functions

- 2 main components:
 - Extracellular domain that recognizes a cell-surface antigen specific for the target
 - Intracellular signalling domain that initiates signal transduction necessary
 T cell activation upon antigen binding

-Extracellular domain that can bind specifically to a target molecule expressed on the tumor cell surface:

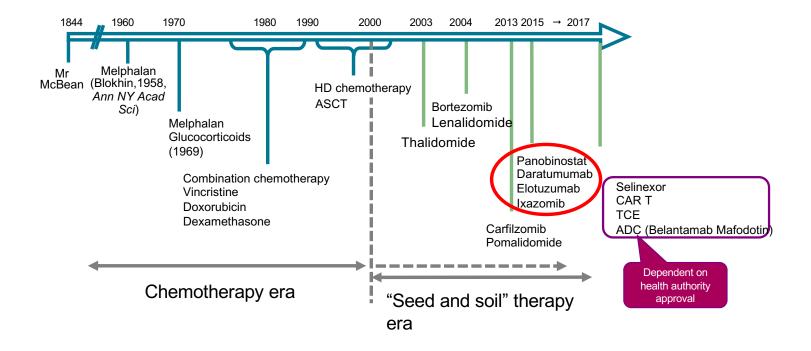
 Single-chain antibody or ligand of cell surface receptor
 Recognize tumor-associated antigens in a non-MHC-specific manner
 Molecular hinge region derived from CD8 provides flexibility to allow reorientation to bind antigen

 Costimulatory domain (II and III generation CAR-T):

 CD28 or 4-1BB
 More robust cytokine production and enhanced cytolytic activity of CAR-Ts
 -T-cell activation domain: CD3ζ

Antigen recognition via extracellular domain and HLA-independent activation of T
 cells with powerful cytotoxic and memory functions via intracellular domain

Remodelling of tumor suppressive microenvironment


Ye B et al, Molecular cancer 2018; 15;17(1):32

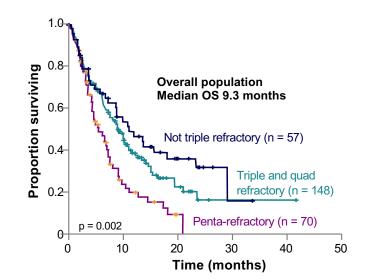
Adapted from Kershaw MH et al. Nat rev Cancer 2013

PRESENTED A

• CAR, chimeric antigen receptor; MHC, major histocompatibility complex; MM, multiple myeloma; NK, natural killer.

Do we need new treatments for patients with MM?

ADC, antibody drug conjugate; ASCT, autologous stem cell transplantation; CAR T, chimeric antigen receptor T cell; HD, high-dose; MM, multiple myeloma; TCE, T-cell engager.

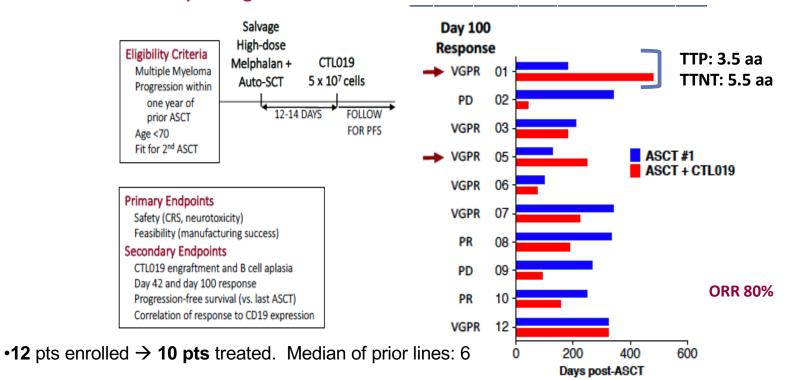

Adapted from Rodríguez Otero P, et al. Haematologica. 2017;102:423-32.

MAMMOTH study: suboptimal outcomes in patients refractory to anti-CD38 monoclonal antibodies

275 patients refractory to anti-CD38 mAbs

	Median OS months	
Not triple refractory	11.2	Refractory to 1 CD38 mAb, and not both PI and IMiD
Triple and quad refractory	9.2	Refractory to 1 CD38 mAb + 1 PI + 1 or 2 IMiD compounds, etc.
Penta refractory	5.6	Refractory to 1 CD38 mAb + 2 PIs + 2 IMiD compounds
Overall cohort	8.6	

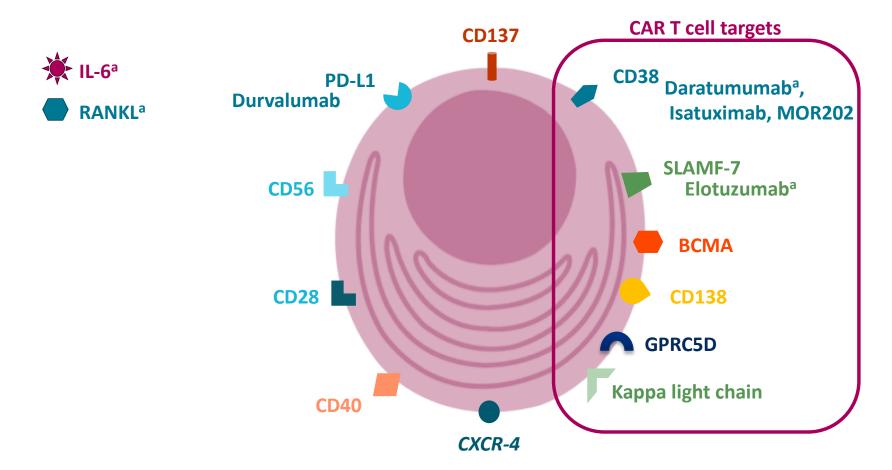
249 patients received further treatment ORR 31% mPFS 3.4 months mOS 9.3 months



Gandhi UH et al., Leukemia. 2019

First CAR-T in MM: CD-19

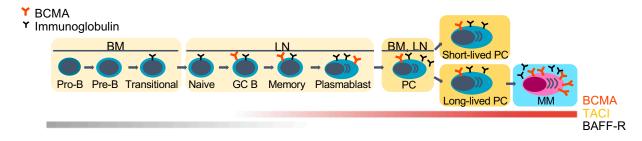
Rational: a minor component of the MM clone with drug-resistant, disease-propagating properties has a B-cell phenotype (99% PCs negative for CD19)

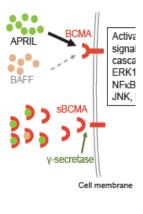

Study Design and Patient Characteristics

Garfall AL, et al. N Engl J Med 2015; 373:1040-1047

Garfall AL, et al. JCI Insight, 2018; 3(8):e120505

Surface antigens on clonal plasma cells




^aApproved by the FDA and EMA.

BCMA, B-cell maturation antigen; IL-6, interleukin-6; PD-L1, programmed cell death-ligand; RANKL, receptor activator of nuclear factor kappa-B ligand.

Bhatnagar V, et al. Oncologist. 2017;22:1347-53. Gormley NJ, et al. Clin Cancer Res. 2017;23:6759-63. Jelinek T, et al. Front Immunol. 2018;9:2431. Moreno L, et al. Clin Cancer Res. 2019;epub. Raab MS, et al. Blood. 2016;128:1152. Rawstron AC, et al. Haematologica. 2008;93:431-8. Smith EL et al. Sci Tras Med 2019; 11(485).

BCMA: a good target

- BCMA is an antigen expressed specifically on PCs and myeloma cells
 - Member of TNFR superfamily. Binds 2 ligands (BAFF e APRIL)
 - higher expression in myeloma cells than normal PCs
 - key role in B-cell maturation and differentiation
 - promotes myeloma cell growth, chemoresistance, and immunosuppression in the BM microenvironment
- Expression of BCMA increases as the disease progresses from MGUS to advanced myeloma

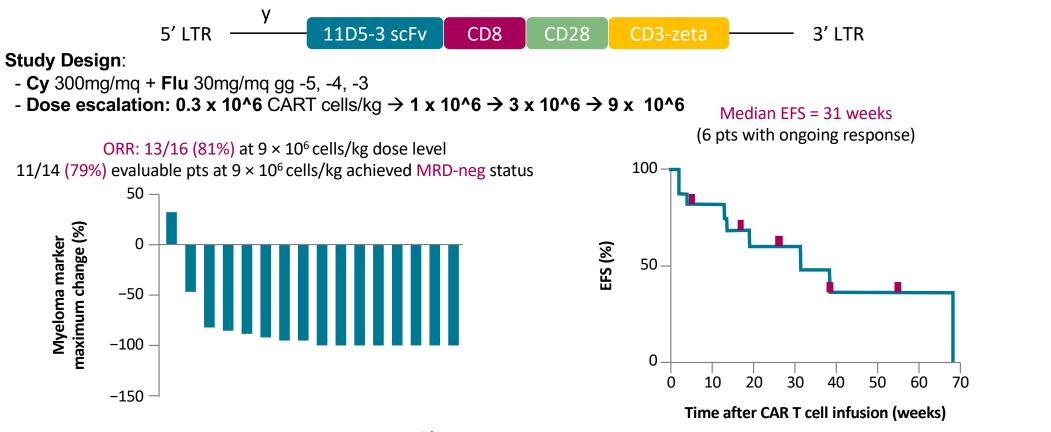
APRIL, a proliferation-inducing ligand; BAFF-R, B-cell activating factor receptor; GC, germinal centre; LN, lymph node; MGUS, monoclonal gammopathy of unknown significance; sBCMA, soluble BCMA; TACI, transmembrane activator and CAML interactor.

Cho SF, et al. Front Immunol. 2018;9:1821. Moreaux J, et al. Blood. 2004;103:3148-57. Sanchez E, et al. Br J Haematol. 2012;158:727-38.

BCMA CAR T cells in MM

46 clinical trials with BCMA CAR T in clinicaltrials.gov

Trial site	ScFv	Co-s domain	Gene transfer	Conditioning therapy	T-cell dose CAR+ T cells/kg
NCI ^{1,2}	11D5-3	CD28	Ƴ- retroviral	Cy 300 mg/m ² × 3 + Flu 30 mg/m ² × 3	0.3–9.0 × 10 ⁶
	NR, murine	4-1BB	Lentiviral	Cy 300 mg/m² × 3 + Flu 30 mg/m² × 3	50, 150, 450, and 800 × 10 ⁶
University of Pennsylvania ⁴	NR, human	4-1BB	Lentiviral	None or Cy 1.5 g/m ²	10–50 × 10 ⁶ or 100–500 × 10 ⁶
	NR, human	4-1BB	Lentiviral	Cy 300 mg/m² × 3	1.5–7.0 × 10 ⁶
MSKCC ^{7,8}	NR, human	4-1BB	Ƴ- retroviral	Cy 3000 mg/m² or Cy 300 mg/m² × 3 + Flu 30 mg/m² × 3	1, 150, 450, and 800 × 10 ⁶
	NRª, human	4-1BB	Transposon	Cy 300 mg/m² × 3 + Flu 30 mg/m² × 3	0.75, 2, 6, 10, and 15 × 10 ⁶


Brudno JN, et al. J Clin Oncol. 2018;36:2267-80. 2. Ali SA, et al. Blood. 2016;128:1688-700.
 Berdeja JG, et al. Blood. 2017;130:740. 4. Cohen AD, et al. Blood. 2017;130:505. 5. Aili H, et al. EHA abstract. 6. Fan FX, et al. J Clin Oncol. 2017;35:18. 7. Smith EL, et al. Blood. 2017;130:742.
 Hermanson DL, et al. Blood. 2016. 9. Gregory T, et al. Blood. 2018;132:1012. Presented at ASH 2018.

^a Small human ibronectin domain.

Cy, cyclophosphamide; Flu, fludarabine.

BCMA-CAR T cells in MM

Phase I study NCI: efficacy (N = 16)

CRS minimal at lower doses but substantial at 9×10^6 /kg

• 6 pts grade 3–4 CRS

٠

- 5/16 pts (31%) received tocilizumab
- 10 pts grade 1–2 CRS 4/16 pts (25%) received steroids

Brudno JN, et al. J Clin Oncol. 2018;36:2267-80.

CAR-T cell therapy (and other T-cell redirected therapies): unique acute toxicities

- Cytokine release syndrome (CRS)
 - Inflammatory process related to exponential T cell proliferation and activation
 - Release of supra-physiological levels of proinflammatory cytokines (e.g, IL-6, INFγ, TNFα)
 - IL-6 believed to be central mediator
- Time to onset: expected in first 14 days (mostly first 7 days)
- Fever, hypotension, hypoxia, multi-organ failure
- Diagnosed based on clinical symptoms; CRP used as surrogate

- Encephalopathy/Neurological toxicity
 - Exact mechanism remains unclear but pathophysiology thought to include endothelial activation/dysfunction and microangiopathy
 - May occur together with CRS or independently (after CRS).
 - Time to onset: expected in first 14 days
 - Diminished attention, language disturbance, confusion, disorientation, and occasionally seizures/cerebral oedema, delirium

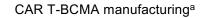
Citopenie persistenti/infezioni

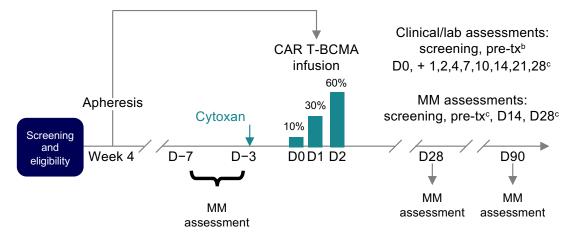
Neelapu Nat Rev Clin Oncol 2018 Jan;15(1):47-62; Drent PloS One 2018

https://doi.org/10.1016/j.bbmt.2018.12.758

ASBMT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells

The goal

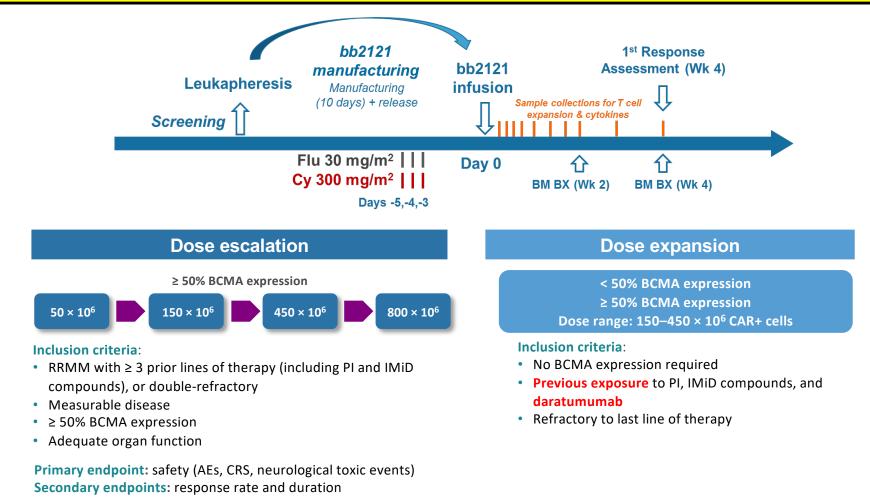

to provide a uniform consensus grading system for CRS and neurotoxicity associated with immune effector cell therapies, for use across clinical trials and in the post-approval clinical setting


Penn/Novartis BCMA CAR-T Phase I trial

- Lentiviral vector-based + 4-1BB co-stimulatory domain
- Fully human scFV fused to hinge and TM CD8

Inclusion criteria:

 RRMM with ≥ 3 prior lines of therapy (including PI and immunomodulatory drugs), or 2 prior regimens if double refractory (median: 7 lines)



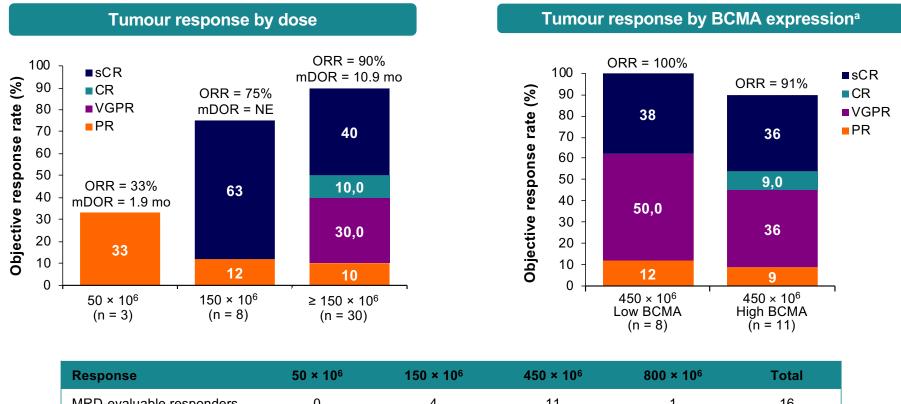
	Cohort 1 (n = 9)	Cohort 2 (n = 5)	Cohort 3 (n = 11)
Treatment	1–5 × 10 ⁸ CAR+ T cells	Cy 1.5 g/m ² + 1–5 × 10⁷ CAR+ T cells	Cy 1.5 g/m ² + 1–5 × 10 ⁸ CAR+ T cells
ORR, n (%)	4 (44)	1 (20)	7 (64)
mPFS, days	65	57	125

Cohen AD, et al. J Clin Invest. 2019;129:2210-21

BCMA CAR T cell

Ide-cel (bb2121) CRB-401 phase 1 trial

AE, adverse event; RRMM, relapsed/refractory MM.

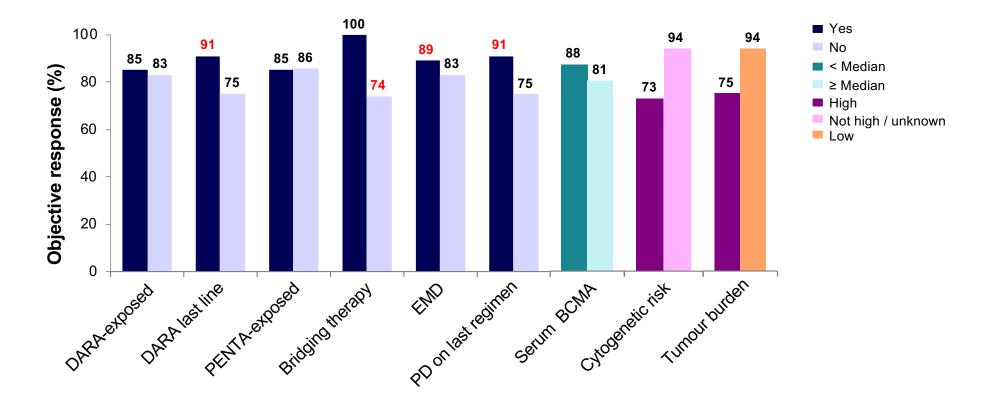

Ide-cel CRB-401 phase 1 trial:

baseline demographics and patient characteristics

Characteristic	Dose escalation (N = 21)		Expansion (N = 12)	
Prior anti-myeloma regimens, median (range)	7 (3–14)		8 (3–23)	
Prior ASCT, no. (%)				
0		0	1	(8)
1	15	(71)	8	(67)
≥2	6 (29)		3 (25)	
	Dose escalation (N = 21)		Expansion (N = 12)	
Characteristic	Exposed	Refractory	Exposed	Refractory
Prior therapies, n (%)				
Bortezomib	21 (100)	13 (62)	12 (100)	7 (58)
Carfilzomib	19 (91)	12 (57)	11 (92)	7 (58)
Lenalidomide	21 (100)	17 (81)	12 (100)	7 (58)
Pomalidomide	19 (91)	14 (67)	12 (100)	12 (100)
Daratumumab	15 (71)	9 (43)	12 (100)	9 (75)
Bortezomib / Lenalidomide	21 (100)	12 (57)	12 (100)	5 (42)
Bortezomib / Lenalidomide / Carfilzomib / Pomalidomide / Daratumumab	15 (71)	3 (14)	11 (92)	3 (25)

Ide-cel CRB-401 phase 1 trial:

tumour response is dose-related and independent of tumour BCMA expression

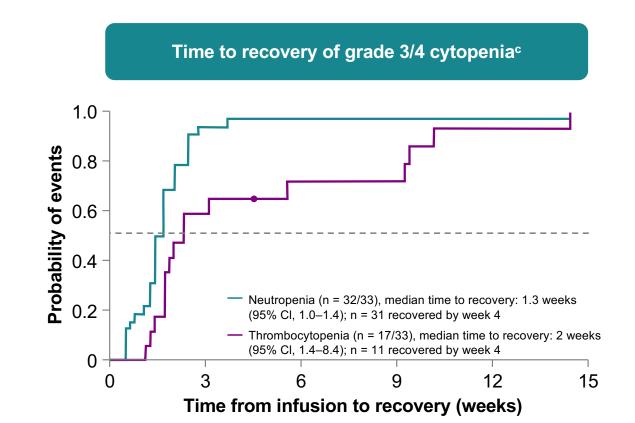


MRD-evaluable responders	0	4	11	1	16
MRD-negª	0	4 (100)	11 (100)	1 (100)	16 (100)

mDOR, median duration of response; NE, not evaluable.

Ide-cel CRB-401 phase 1 trial:

tumour response by baseline characteristics


Baseline characteristic

DARA, daratumumab; EMD, extramedullary disease; PD, progressive disease.

Ide-cel CRB-401 phase 1 trial: AEs of special interest

CAR T cell therapy TEAEs All infused patients (N = 33)

TEAE, n (%)	Any Grade	Grade 3	Grade 4
CRS	25 (76)	2 (6)	0
Neurological toxic effect ^a	14 (42)	0	1 (3) ^b
Neutropenia	28 (85)	2 (6)	26 (79)
Thrombocytopenia	19 (58)	5 (15)	10 (30)
Anaemia	19 (58)	15 (45)	0
Infection	12 (36)	2 (6)	0

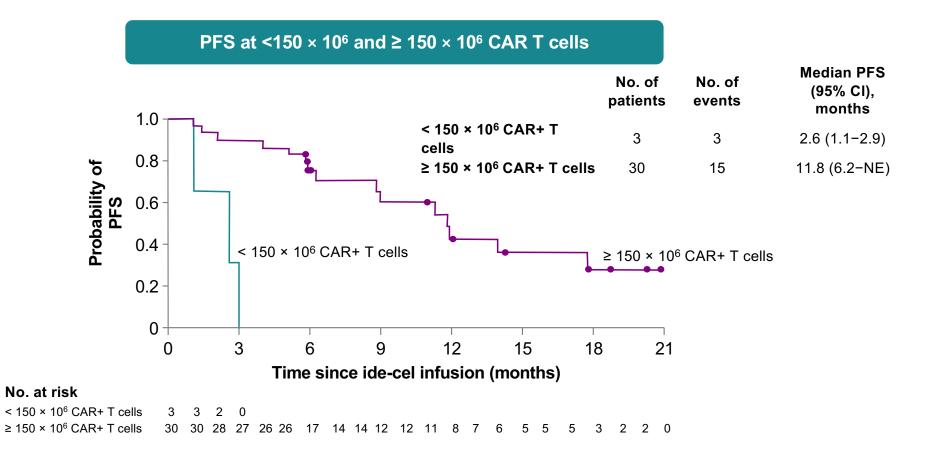
^a Events occurring in first 90 days and including dizziness, bradyphrenia, brain oedema, somnolence, confusional state,

nystagnmus, insomnia, memory impairment, neurotoxicity, lethargy, tremor and hallucination.^b Patient with high tumour burden; neurological

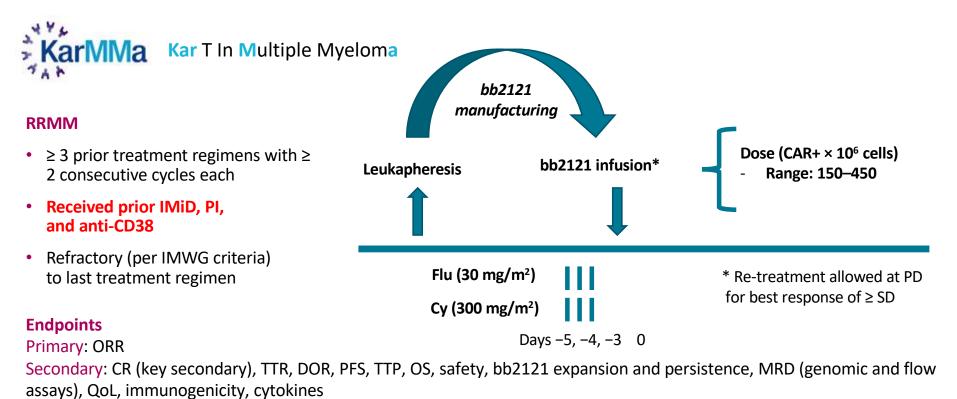
effect resolved within a month. ^c Includes patients with grade 3/4 cytopenia on or before month 1 are included.

Median and 95% CI from Kaplan–Meier estimate. CI, confidence interval; TEAE, treatment-emergent adverse event.

Cytokine release syndrome and neurotoxicity of bb2121 compared with anti-CD19 CAR T


	bb2121 CRB 401	Axi-cel ZUMA-1	Tisa-cel JULIET
Target	BCMA	CD19	CD19
Co-stimulatory domain	4-1BB	CD28	4-1BB
Grade 3-4 cytokine release syndrome	6%	13%	22%
Grade 3-4 neurotoxicity	3%	28%	12%

n.b. KITE-585, anti-BCMA CAR T using CD28, no longer in development

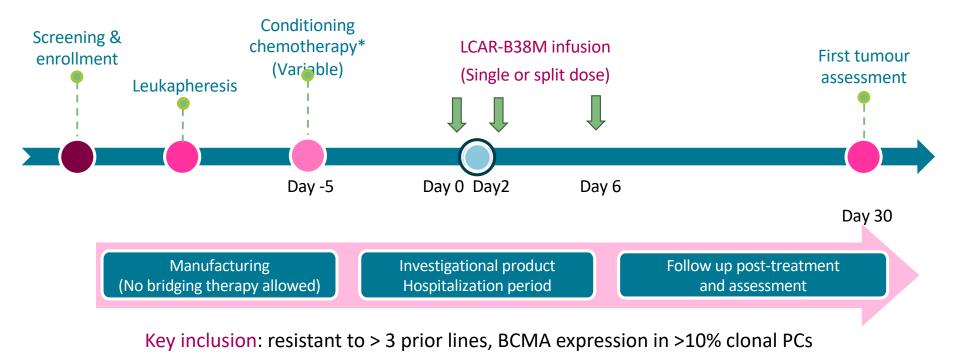

- Relationship tumor burden-CRS risk
- Possible but not sure relationship CAR-T dose-CRS risk

Raje N et al., *N Engl J Med* 2019 Neelapu SS et al., *N Engl J Med* 2017 Schuster SJ et al., *N Engl J Med* 2019

Ide-cel CRB-401 phase 1 trial: PFS

KarMMa Ide-cel pivotal phase 2 single-arm study

Exploratory: BCMA expression/loss, T cell immunophenotype, GEP in BM, HEOR

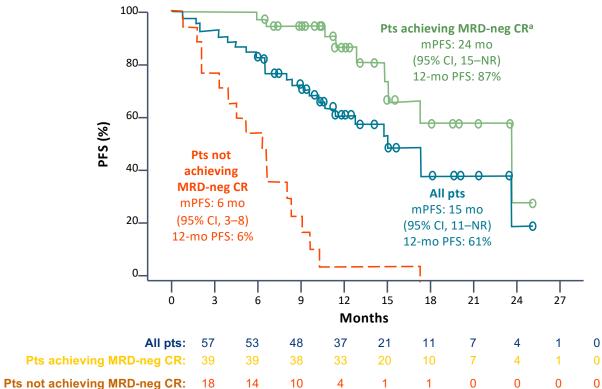

GEP, gene expression profile; HEOR, health economics and outcomes research; IMWG, International Myeloma Working Group; QoL, quality of life; TTP, time to progression; TTR, time to response.

ClinicalTrials.gov Identifier: NCT03361748.

LCAR-B38M BCMA CAR T Phase I study: design

Lentiviral vector based + 4-1BB co-stimulatory domain

BCMA catching domain target two different epitopes simultaneously


Median number of prior lines of therapy: **3 (1–9)**

Prior bort: 68%; prior len: 44%; prior PI + IMiD: 60%; prior SCT: 18%

Zhao WH, et al. Presented at ASH 2018; abstract 955.

LCAR-B38M: Legend Biotech phase I trial updated single-centre experience (LEGEND 2)

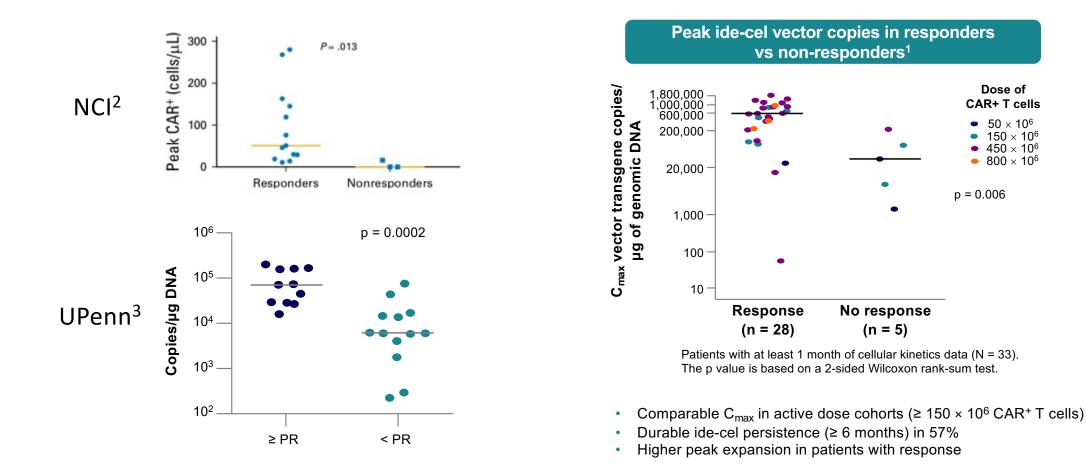
Conditioning: Cyclophosphamide 300mg/m²

ORR = 88% 74% CR and 68% MRD-neg CR)

Zhao WH, et al. Presented at ASH 2018; abstract 955.

- CAR-T cells/kg: 0.07 2.1 x 10⁶. Median dose: 0.5 x 10⁶ cells/kg
- Split infusion (Day 1 20%, Day 3 30%, Day 7 50%)
 - mDOR = 16 mo (95% CI, 12 mo–NR)
 - mDOR for MRD-neg CR: 22 mo (95% Cl, 14 mo–NR)
 - 12 mo OS: 75%; 94% for pts achieving MRD-neg CR
 - Pts not achieving MRD-neg CR had poor outcome: mPFS 6 mo, mOS 8 mo, 12-mo OS 29%

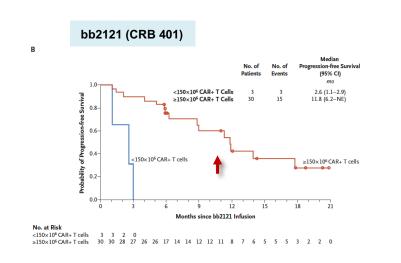
Toxicity profile

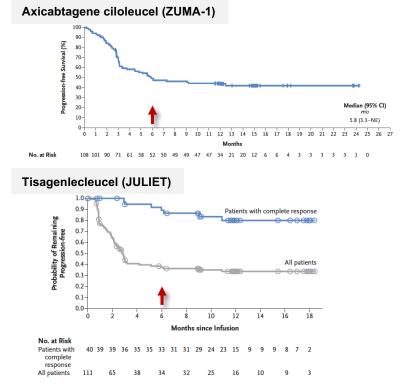

- 35% grade 2 CRS; 7% grade 3; no grade 4
- Tocilizumab use: 46%

Ongoing trial, phase 1b/2 CARTITUDE-1 study (NCT03548207) evaluating JNJ-68284528 (same CAR as LCAR-B38M)

> Evaluate effectiveness of LCAR-B38M in more typically heavily treated US (and ex-US) patients compared to Chinese cohort

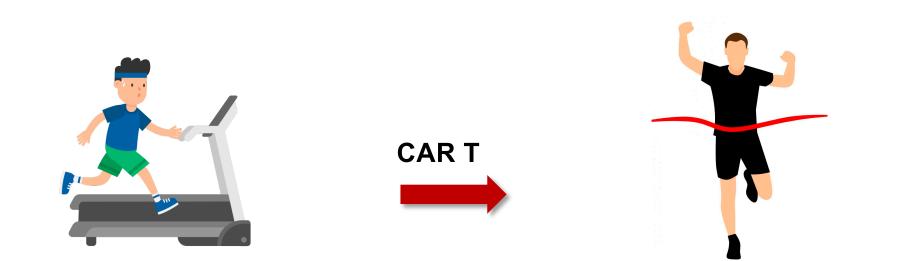
What we know: lessons from initial studies


CAR-T cell expansion correlates with response across different trials

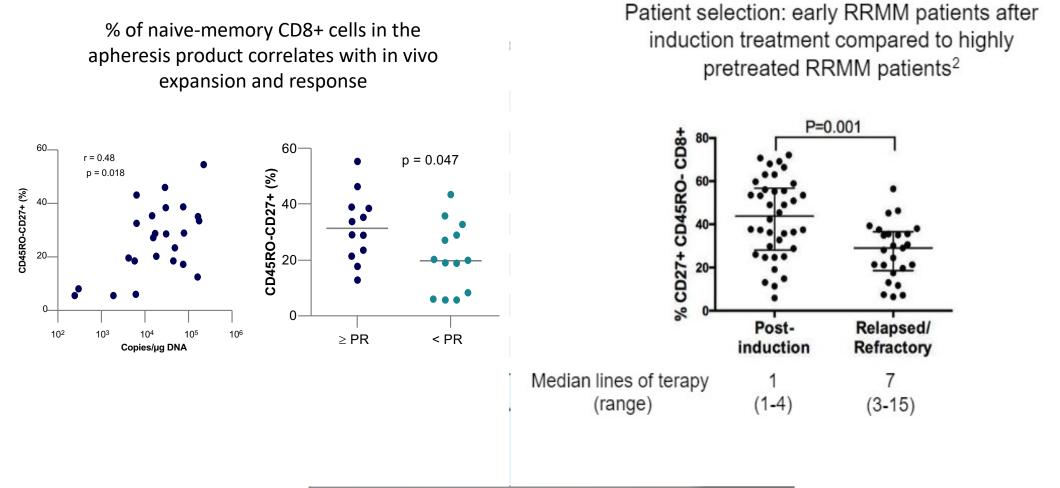


¹Raje N, et al. N Engl Med. 2019;380:1726-37; ²Brudno JN, et al. J Clin Oncol. 2018;36:2267-80; ³Cohen AD, et al. J Clin Invest. 2019;129:2210-21.

What we know: lessons from initial studies PFS of CAR-T cells in multiple myeloma compared with lymphoma:

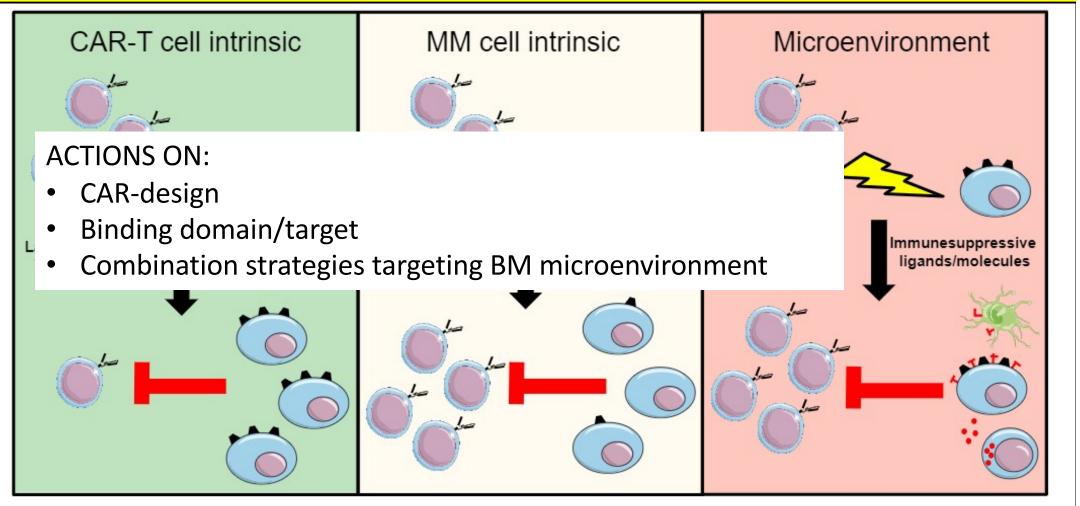

Despite very high ORR and CR rates, patients continue to relapse....

Room for improvement with CAR-T.... Different biology of myeloma v. lymphoma.... What we know: lessons from initial studies CAR-T vs other therapies


CAR-T therapy may allow patients to step off the "treadmill" of continuous treatment

Current paradigm of myeloma therapy: **continuous** treatment until progression

One treatment (then observation)


What we know: Not all T-cells are the same. T-cell fitness matters

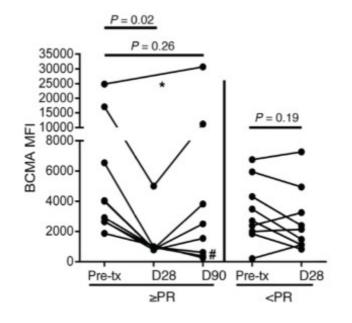
Gattinoni L et al. Nature Medicine (2017); Cohen AD, et al. J Clin Invest. 2019;129:2210-21; Dancy E et al, ASH 2018, Blood 132:1886

What we do not know yet?

Understanding the non-responders and the resistance

Slide presented by N. Raje at IMS Boston meeting

Not all T cells are the same

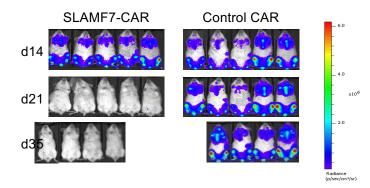

Next generation of products trying to increase the % of memory Tcells

	bb21217	JCARH125
Binder	Murine	Human
Costimulatory domain	4-1BB	4-1BB
Vector	Lentivirus	Lentivirus
Manufacturing Process	Unselected T cells at culture initiation + PI3K inhibitor during T cell culture	1:1 ratio of CD4/CD8 T cells at culture initiation
T Cell Phenotype	Enriched for T_n and T_{cm} cells	Enriched for T_n and T_{cm} cells
Preclinical	Low tonic signaling No inhibition by sBCMA	Low tonic signaling No inhibition by sBCMA
Stage of Development	Phase I trial initiated Q3 2017	Phase I trial initiated Q1 2018
Preliminary efficacy results	ORR 83% 150x10 ⁶ CAR T 4/4 MRDneg	ORR (n=44) 79%; CR 43%

Shah N et al. Presented at ASH 2018; abstract 488 ASH 2018 compare investor relations event, december 2, 2018: https://s22.q4cdn.com/728481125/files/doc_presentations/2019 /03/ASH-2018-IR-Event_FINAL_website-version_updated.pdf Mailankody S et al.Blood;132:957. Presented at ASH 2018

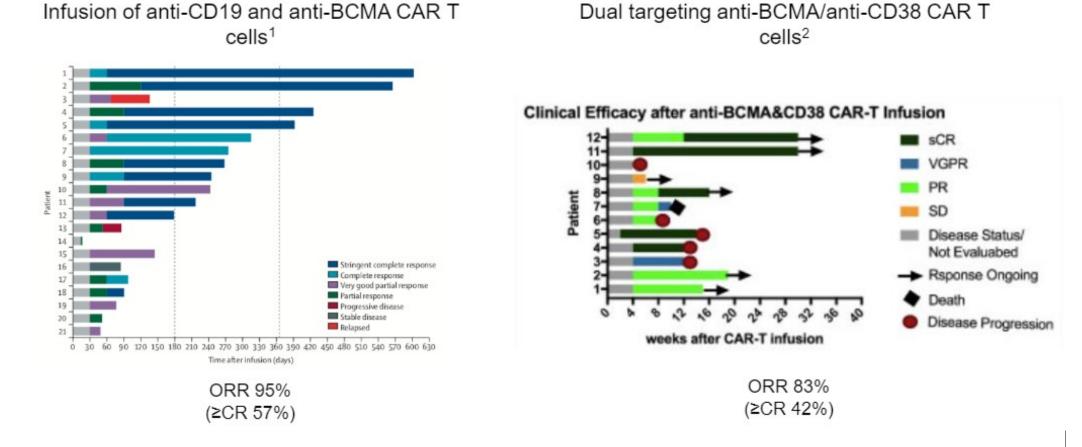
MM-cell intrinsic mechanisms: BCMA loss or modulation has been described after anti-BCMA CAR T therapy

Residual MM cells from responding patients show a lower BCMA expression 1 month after CAR-T cell infusion²


CARAMBA project: SLAMF-7 CAR T

SLAMF-7 targeting, virus-free Sleeping Beauty gene transfer

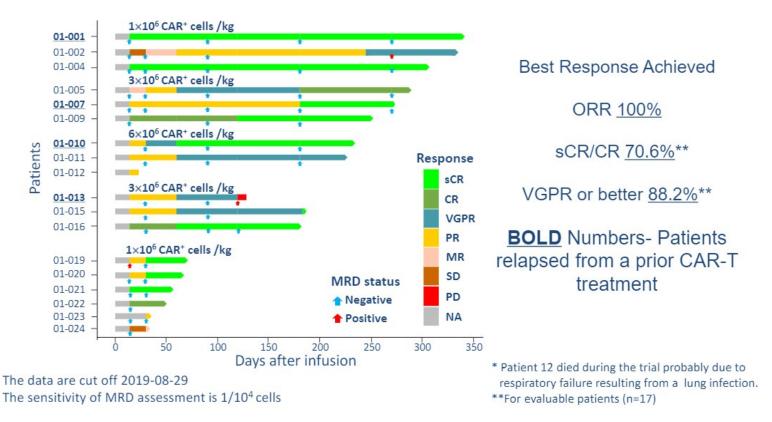
Expressed on a fraction of NK, T & B cells: activating or inhibitory function **High-level expression is retained in malignant plasma cells in MM and MGUS**



Eradication of extra-/medullary myeloma after single dose of SLAMF7 CAR T

Cohen AD, et al. J Clin Invest. 2019;129:2210-21, Gogishvili T, et al. Blood 2017;130:2838-47.

New targets and dual-target CAR-T



Yan Z et al. Lancet Haematol. 2019 Aug 1; Mei H et al EHA 2019 Jun 15, 2019; 267409; S826.

ORR: overall response rate; CR: complete response. sCR: stringent complete response. VGPR: very good partial remission. PR: partial response. SD: stable disease.

However, most patients relapse with persistent but non-functional CAR-T

Is there a role of host anti-CAR immunity?. Since most of the CARs have non-human domains
 → Role of **fully humanized CAR-T**

Li C. et al. Oral presentation at IMW meeting in Boston, September 2019

Future development of CAR T in multiple myeloma

- This is just the beginning of anti BCMA CAR T, "version 1.0"
 - Deep responses, but room for improvement with durability of response
- Currently, CAR T reserved for patients with refractory, heavily pretreated disease

Potential advantages to CAR T earlier in patient course

- Less clonal heterogeneity, less clonal evolution: less resistance to therapy (note better responses seen with e.g., daratumumab or dexamethasone earlier in disease course)
- Lower tumor burden at first or earlier relapse may respond better to CAR T
- Better functional status, less comorbidities, better renal function
- CAR T-cells created from less heavily treated patients may be more effective
 - Source of CAR T-cells may be less "exhausted," see also comparison of T cells in healthy donors v. MGUS/myeloma patients (Bailur JK et al., JCI Insight 2019)
- KarMMa-2 (NCT03601078) in early relapse with bb2121
 - Early relapse defined as progressive disease <18 months since start of initial therapy (with or without auto SCT)
- KarMMa-3 (NCT03651128), randomized study of bb2121 v. standard of care in patients with 2-4 prior lines of treatment

CAR-T trials ongoing (2019-2020)

- BCMA CAR pivotal trials in RRMM (≥ 3 prior lines)
 - Bogulatory approval by 2020
 - Regulatory approval by 2020?? (FDA)
- Ongoing ph 1/2 trials for next generation CAR productos (i.e. BB21217)
- BCMA CAR trials in patients in earlier lines of therapy
 - 1-3 prior lines (randomized with SoC regimens)
 - Early relapse after optimized frontline treatment (high-risk disease)
 - Consolidation in non-CR patients with HR disease
- Combination trials
 - Gammasecretase inhibitors, checlpoint, IMIDs, dual CAR-T (CD19 + BCMA, CD38 + BCMA)
- Off-the shelf allogeneic CAR-T
- New targets: SLAMF7 (CARAMBA trial), GPRC5D ...

Conclusion

- Despite continuous improvement in survival thanks to the incorporation of novel treatments, MM patients still relapse, and survival after failure to IMiDs and PIs remains poor. Therefore, there is a need for new treatment strategies in these patients
- BCMA is a promising therapeutic target and clinical results with the new BCMA-directed treatments are encouraging among patients with RRMM
- Adoptive cell therapy, especially with CAR T cells, is revolutionizing the treatment of haematological malignancies
 - In MM, promising results have been reported so far with very high CR and MRD-neg rates in an end-stage population.
 However, no plateau has yet been seen in the curve
- Outcomes will be improved by understanding the mechanisms of action, immune response and cell biology
- There is a need to define which patient may benefit from each strategy. Can they live together in the MM portfolio?? Is there a specific place for BiTes or CAR-T???
- Adequate patient selection and earlier use in the course of the disease may surely impact the long-term outcome of these novel therapies.