

Progetto Ematologia Romagna

Da MDS a leucemia acuta Emanuela Ottaviani

MDS

- Heterogeneous clonal bone marrow diseases
- Ineffective hematopoiesis
- Peripheral cytopenias
- Morphologic dysplasia
- Increased risk of progression to AML.

Peripheral blood smear/ bone marrow aspirate:

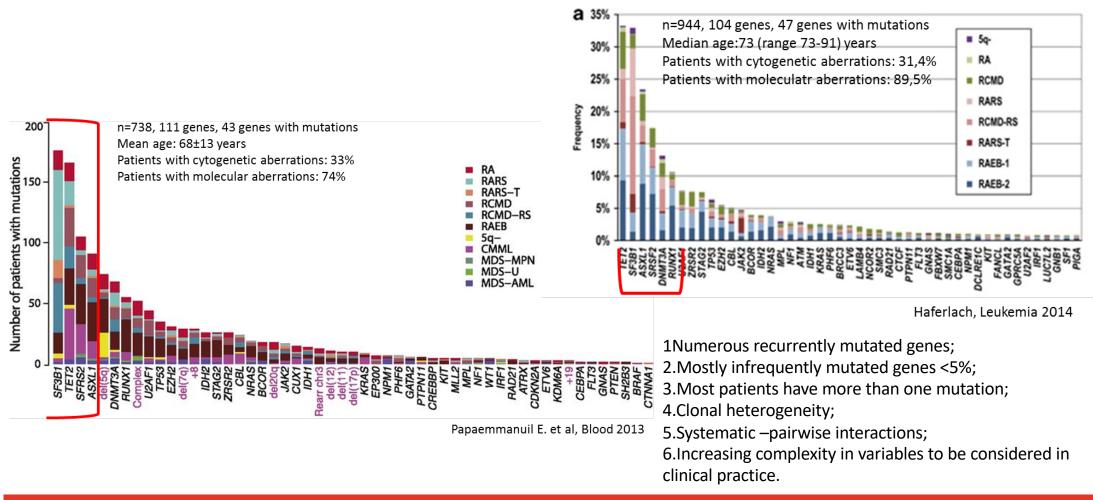
dysplasia in one or more cell lines

blasts

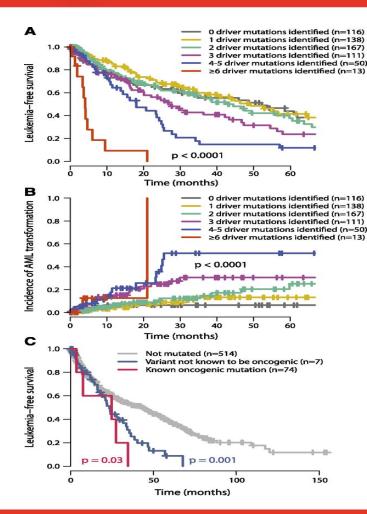
ring sideroblasts

Bone marrow biopsy:

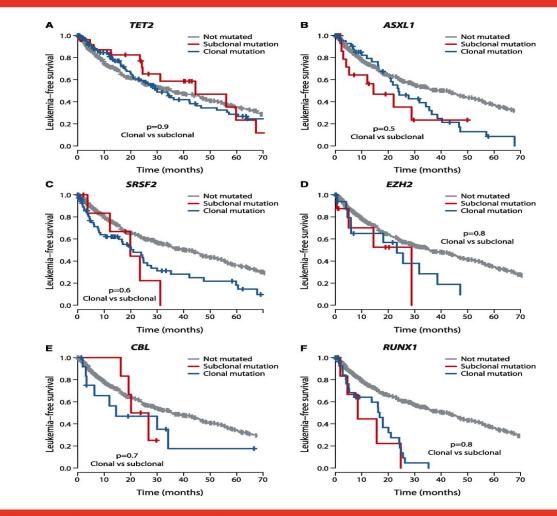
cellularity; CD34+; fibrosis


Cytogenetic analysis: +8, -Y, del(20q)-

Mutation analysis


Abnormality	Frequency (%)					
-5 or del(5q)	10-15					
-7 or del(7q)	10					
i(17q) or t(17p)	2-3					
del(12p) or t(12p)	1-2					
del(11q)	1-2					
-13 or del(13q)	1-2					
del(9q)	1					
idic(X)(q13)	1					
inv(3)(q21q26.2)	1					
t(6;9)(p23;q34)	1					
t(3;21)(q26.2;q22.1)	<1					
t(1;3)(p36.3;q21.2)	<1					
t(11;16)(q23;p13.3)	<1					
t(2;11)(p21;q23)	<1					

*Frequencies reported in the table were extrapolated from Sole et al, 55 Haase et al, 56 and Schanz et al. 58


Somatic mutations in MDS

PROGETTO EMATOLOGIA – ROMAGNA Cesena, 21 settembre 2019

2019

PROGETTO EMATOLOGIA – ROMAGNA Ce

Cesena, 21 settembre 2019

2016 WHO CLASSIFICATION

Myelodysplastic syndromes (MDS)

MDS with single lineage dysplasia

MDS with ring sideroblasts (MDS-RS)

MDS-RS and single lineage dysplasia

MDS-RS and multilineage dysplasia

MDS with multilineage dysplasia

MDS with excess blasts

MDS with isolated del(5q)

MDS, unclassifiable

Provisional entity: Refractory cytopenia of childhood

Myelodysplastic/myeloproliferative neoplasms (MDS/MPN)

Chronic myelomonocytic leukemia (CMML)

Atypical chronic myeloid leukemia (aCML), BCR-ABL1-

Juvenile myelomonocytic leukemia (JMML)

MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T)

MDS/MPN, unclassifiable

MDS and SF3B1

SRSF2 mutated (n=20)

SRSF2 WT (n=129)

U2AF1 WT (n=140)

8

6 8

Time (years)

U2AF1 mutated (n=9)

6

Time (years)

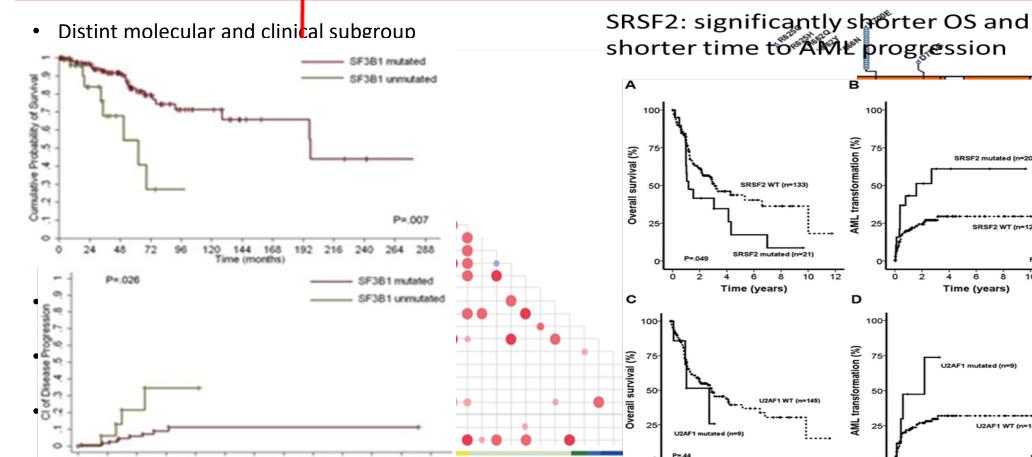
ò

ò

ż

4

ż


4

P=.012

10 12

P=.079

10 12

PROGETTO EMATOLOGIA – ROMAGNA

120 144 168

Time (months)

192

216

240

264 288

Ô

24

48

72

96

2019

Cesena, 21 settembre 2019

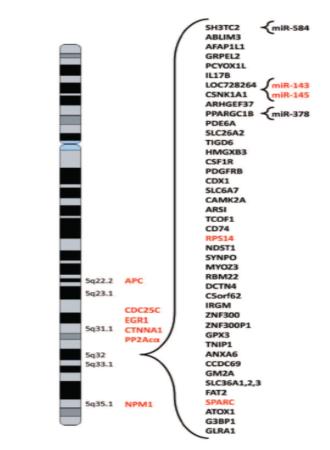
ò

ż

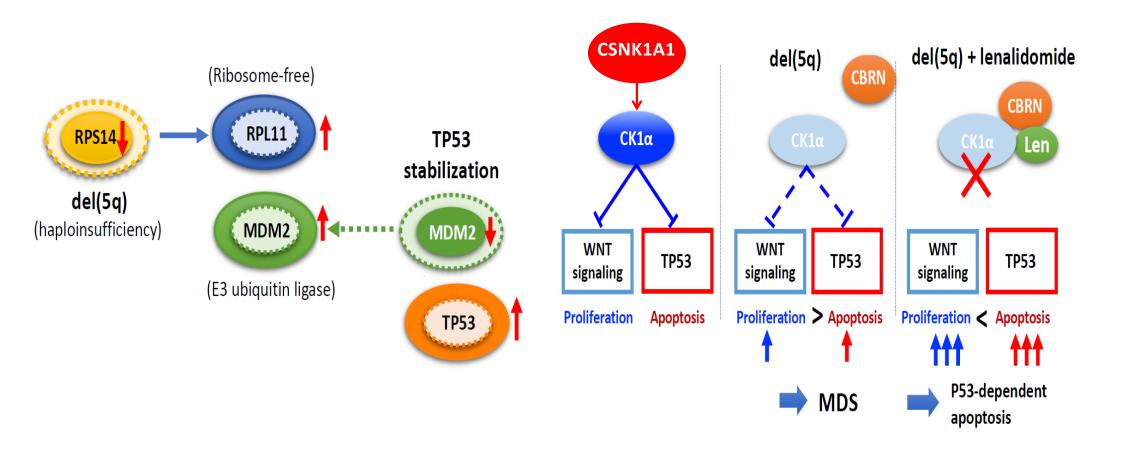
4

6 8

Time (years)

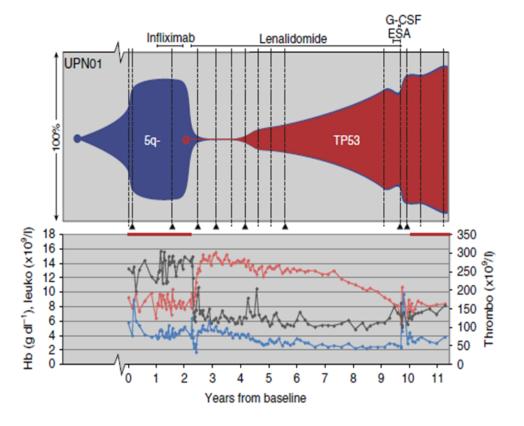


MDS with del(5q)

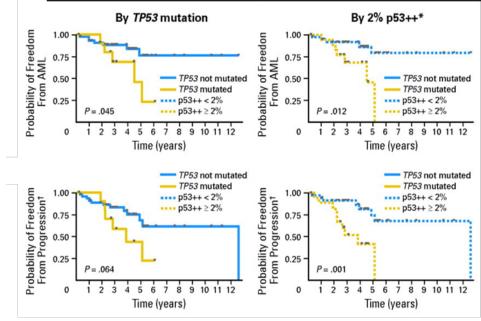

- del(5q): most common aberration (10-20% of MDS)
- Often single abnormality; sometime in a complex karyotype
- Middle age to older
- Female
- Blasts: <1% in PB and <5% in BM
- Clinical presentation:

refractory macrocytic anemia, often severe

- thrombocitosis (may be present)
- neutropenia
- hypolobulated megakariocytes
- Associated with no or one mutation (SF3B1, DNMT3A, TP53, TET2, CSNK1A1, ASXL1, JAK2)
- Good prognosis; lower risk for progression to LAM
- Good response to treatment

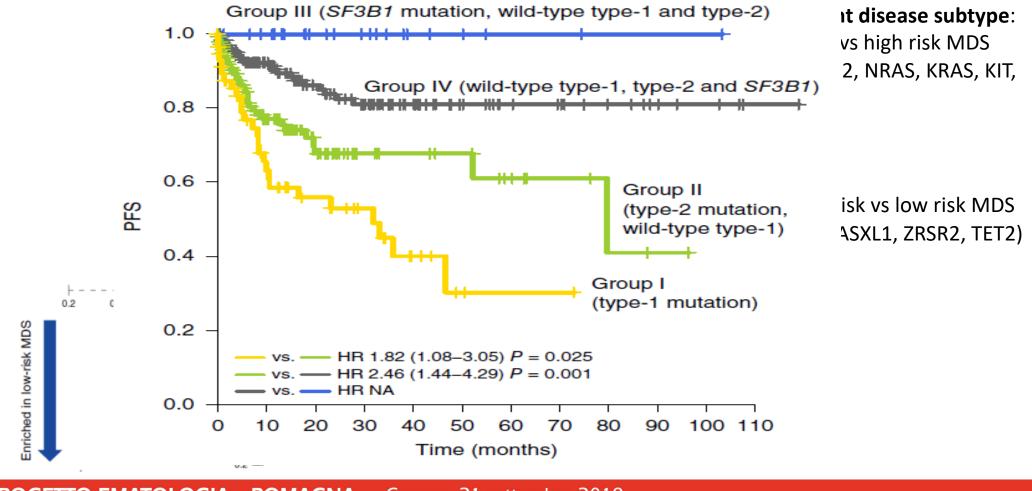


RPS14 and CSNK1A1 haploinsufficience



PROGETTO EMATOLOGIA – ROMAGNA Cesena, 21 settembre 2019

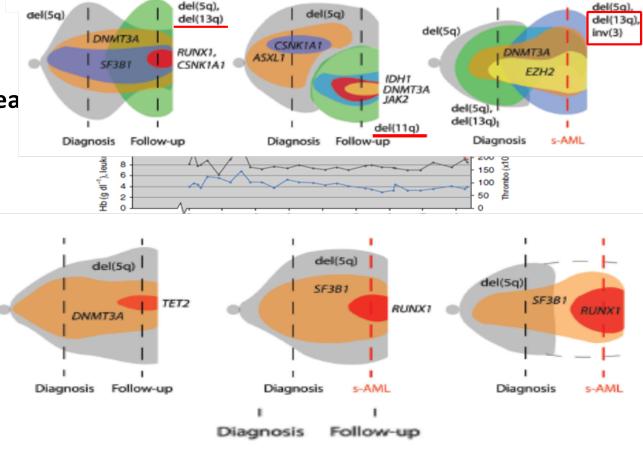
2019


TP53 mutations predict outcome in del (5q) myelodysplastic syndrome and are related to p53 status. (*) p53++, proportion of marrow cells with strong p53 staining by immunohistochemistry. (†) Progression is defined as marrow blast increase from 10% to 19% or acquisition of complex karyotype.

Martin Jädersten; Journal of Clinical Oncology 2011

Clonal evolution in MDS

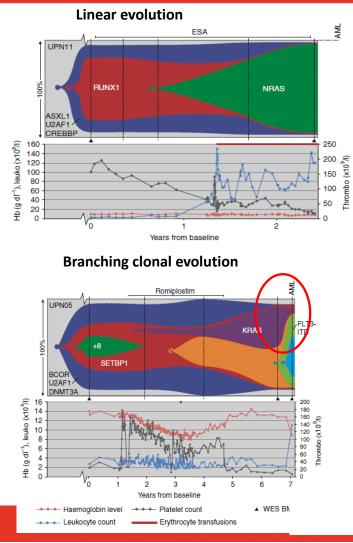
MDS: progression to sAML


PROGETTO EMATOLOGIA – ROMAGNA Cesena, 21 settembre 2019

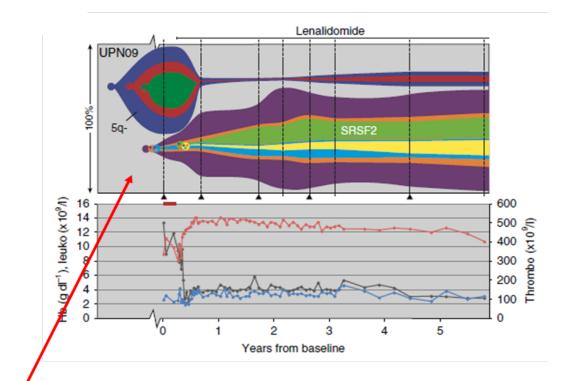
MDS follow-up

During follow-up:

- Gain of cytogenetic alterations
- Stable mutations stable disea



• Gaips of regenee mutationss


PROGETTO EMATOLOGIA – ROMAGNA Cesena, 21 settembre 2019

Meggendorfer M., Haematologica 2017 Jansen J. H., nature communications 2017

Clonal evolution of treated patients

Conclusions

- MDS: a very heterogeneous group of haematopoietic neoplasms
- Important role for mutational data in clinical management
- Various clonal evolution patterns can be observed
- Important molecular monitoring during disease

Which is the role of molecular diagnostic lab????

2019

NGS IN DIAGNOSTIC WORK FLOW

WT1

Sophia Genetics, Myeloid Solution Panel

ThermoFisher, AmpliSeq Myeloid Panel

Myeloid Solution

ABL1	ASXL1	BRAF	CALR	CBL	CEBPa
CSF3R	DNMT3A	ETV6	EZH2	FLT3	HRAS
IDH1	IDH2	JAK2	КІТ	KRAS	MPL
NPM1	NRAS	PTPN11	RUNX1	SETBP1	SF3B1
SRSF2	TET2	TP53	U2AF1	WT1	ZRSR2

30 geni: 10 full,

20 regioni "hotspots"

coverage minimo 1000X (98%)

AmpliSeq Myeloid Panel

Hotspot (23)	Full-gene	Fusion	Expression	1. 2 pools DNA, 1 pool RNA
ABL1 BRAF CBL CSF3R DNMT3A FLT3 GATA2 HRAS IDH1 IDH2 JAK2 KIT KRAS MPL MYH88 NPM1 NRAS PTPN11 SETBP1 SF3B1 SRSF2	ASXL1 BCOR CALR CEBPA ETV6 EZH2 IKZF1 NF1 PHF6 PRPF8 RB1 RUNX1 SH2B3 STAG2 TET2 TP53 ZRSR2	ABL1 ALK BCL2 BRAF CCND1 CREBBP EGFR ETV6 FGFR1 FGFR2 FUS HMGA2 JAK2 KMT2A (MLL) MECOM MET MLLT10 MLLT3 MYH11	BAALC MECOM MYC SMC1A WT1 Controls: HMBS ITGB7 LRP1 MYC TBP	 Coverage of mutations & fusions Compatible sample types: Blood Bone marrow samples Compatible systems: Ion ChefTM with Ion S5TM Sequencing System Ion ChefTM with Ion S5TM XL Sequencing System Ion ChefTM with Ion S5TM XL Sequencing System Ion OneTouchTM 2 with Ion PGMTM Ion ChefTM with Ion PGMTM Compatible software: Torrent SuiteTM software v5.2.1 Ion ReporterTM Server system 5.2 or later -Required for fusion calling Target 5% MAF for SNV
U2AF1				

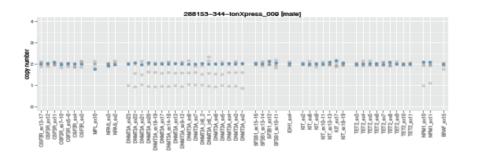
Myeloid Solution by SG: results

WORKSP Reques		VDB nt Database B	rowser #21	424-00			•<••>•		Isti	ituto d	i Ematol	ogia S	5 🥐 🖆	8	(19)
PROJECT Interpreta	tion 1 🔳 🏾	💐 SAMPLE	#107375 HD70	1 < 1/2	23 > 🚍	RUN 05/09/2017 Bas	eCalls 8 HD7	'01 S1				3	Maria Teresa Bochi	cchio	
Overview	Therapeut	tic Di	agnosis Prognos	sis	Varia ଧୁ		Low Coverage	Patient's Disease (0)	REPO	RTED 0	/0 💌	Myeloid Solutio	-	ophia omatic
CREENING GENE	S SNVs/IND	ELs CN	Vs WARNING	s										pretation Sc	cope
	Variant List - so	rted by: PRED	_CAT > PATHOGENICIT	Y_CLASS	5 > GENE								save colum	n preferen	nces 🚾
T	P;	; ★ 🕰	Actionability	т	Gene 🌧	Coding consequence	c.DNA	Depth	VF%	ref	alt				
SOPHIA Filters				INDEL	ABL1	frameshift	c.929delC	3230	5,20	SCCCCC	GCCCC				
etained Variants		A		INDEL	ASXL1	frameshift	c.1934delG	2249	35,0 A	GGGGG	AGGGG				
T ° 70		1		SNP	BRAF	missense	c.1799T>A	4320	8,5 A		т				
ighly Pathogenic				INDEL	CSF3R	frameshift	c.1404delC	3288	5,9 T	GGGGG	TGGGGGG				
A 10				INDEL	EZH2	frameshift	c.1184delG	4484	22,8 7	rcccccc	тссссс				
				SNP	KIT	missense	c.2447A>T	2925	10,7 4		т				
otentially Pathogenic					KRAS	missense	c.35G>A	3126	7,30		т				
B 11					KRAS	missense	c.38G>A	3171	14,80		т				
nknown Significance	1				NRAS	missense	c.181C>A	2728	15,40		т				
C 45					ZRSR2	inframe_6	c.1338_1343de			AGCCGG					
ikely Benign				SNP	ABL1 ASXL1	missense	c.770A>G c.3745A>G	2747 3804	9,5 A 9,4 A		G				
						inframe_3	c.1380_1382de		3,8 1		т				
D					CEBPA	inframe_3	c.564_566delGCC		3,70		G				
ow Confidence Variants		-		SNP	CSF3R	missense	c.1918A>G	3147	32,27		c				
T ° 266	B			SNP	EZH2	missense	c.505G>A	4719	4,80		т				
lagged Variants				SNP	RUNX1	missense	c.146C>T	1787	9,1 0	5	A				
-0	•	4		SNP	RUNX1	missense	c.801G>A	2186	9,50	2	т				
T (SNP	TET2	missense	c.5942A>G	3128	7,4 A		G				
	B			SNP	TET2	missense	c.2033G>A	3122	8,00	5	А				
	B			SNP	TET2	missense	c.3985C>A	2683	29,30	:	А				

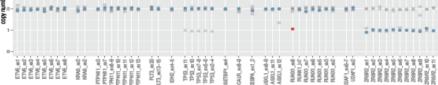
PROGETTO EMATOLOGIA – ROMAGNA

2019

Cesena, 21 settembre 2019



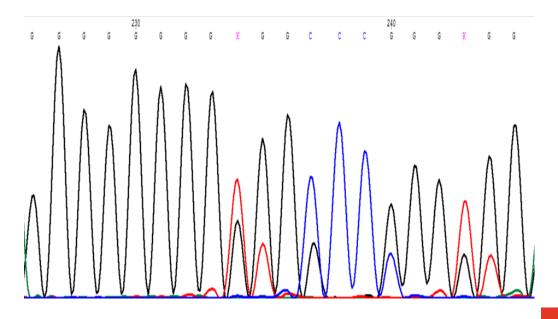
Case report


(T)

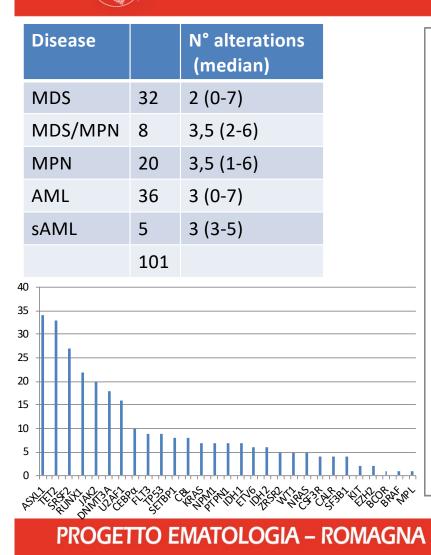
1. CNV DETECTION

1.5.1 Plot for sample 288153-344-lonXpress_009

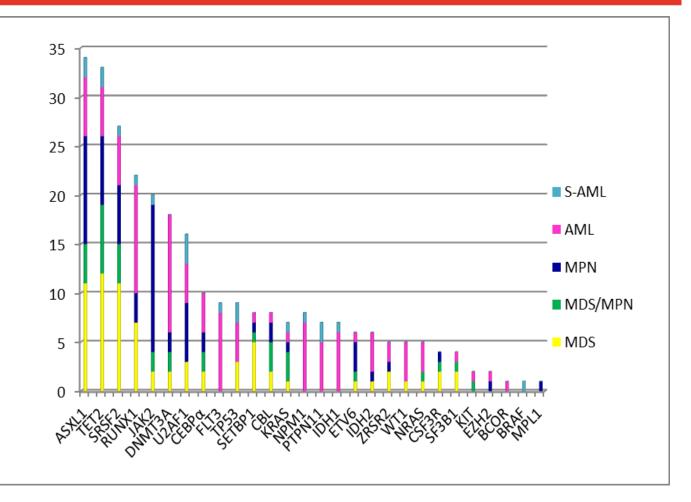
-PRESENZA DI ALTERAZIONI IN:


FLT3 mutazione puntiforme in esone 20: p.Asn841His (c.2521A>C) al 26%;

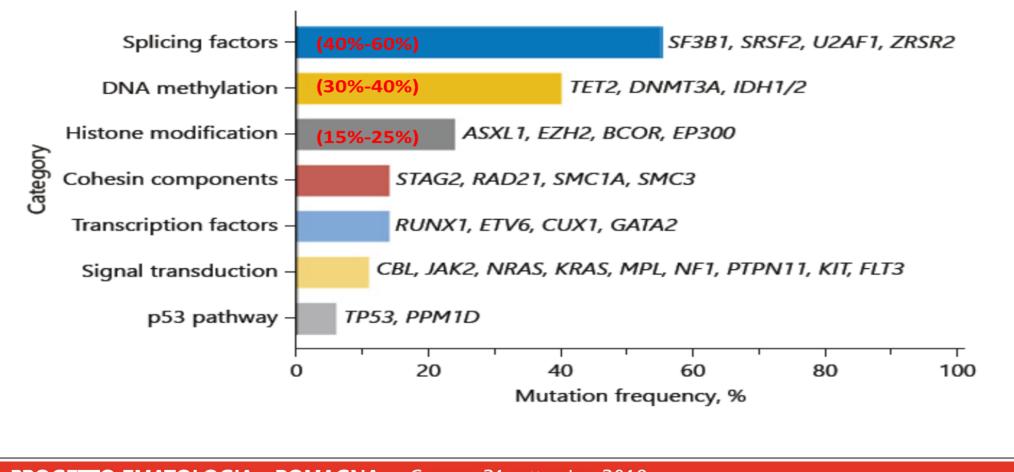
ASXL1 frameshift in esone 13: p.Gly646Trpfs*12 (c.1934dupG) al 19%.


Entrambe le alterazioni sono state evidenziate anche mediante sequenziamento Sanger.

Presente una CNV di delezione a livello dell'esone 8 di RUNX1 (cromosoma 21). Allego plot delle CNV.


Inoltre sono presenti alcune alterazioni riportate come polimorfismi e/o con significato clinico incerto in: ASXL1 (p.Leu815Pro al 100%), TET2 (p.Leu1721Trp al 48%) e TP53 (Pro72Arg al 100%).

Result patients: our casistic



2019

Cesena, 21 settembre 2019

Conclusions

Molecular characterization by NGS at diagnosis and during follow-up

Several gene panels compatible with different instruments

Essential bioinformatics analysis

Possibility to identify even small altered clones

.....BUT

- Sharing panels and analytic pipelines
- Dedicated technicians/biologists and facilities
- Recognized diagnostic activity in NGS

Thanks!!!!