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Clonal evolu*on: not a new concept

This article proposed that most neoplasms are
unicellular in origin and that tumor progression
often results from acquired genetic instability
in the original clone. This allows sequential Se-
lection ofmore aggressive sublines and leads
to considerable heterogeneity and individuality
in advanced malignancies. [The SCI~indicates
that this paper has been cited in over 715
publications.]
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A continuingattempt to understand the neo-
plastic process has been the basis of my
35-year career in cancer research. This article
was an extension of concepts developed in the
1950s by workers who examined (from a bi-
ological1 standpoint and froma cytogenetic2
standpoint) the phenomenon of tumor progres-
sion—the tendency of neoplasms to become
more aggressive in their behavior and more
“malignant” in their characteristics during
their life history.
By the 1960s my own work in tumor cyto-

genetics and in radiation carcinogenesis3
helped crystallize my thinking, and I found
over the next decade that the resultant model
of tumor development was very useful in my
introductory lectures on neoplasia tomedical
students. As finally written for Science in 1976,
the views were hardly revolutionary, although
some diehards were still resisting the idea that
tumors resulted fromsomatic genetic change.

I cited cytogenetic and other evidence to
support the concept that tumors arise from a
single “mutated” cell and that biological and
clinical progression results from subsequent
additional alterations, giving rise to more ag-
gressive subpopulations within the original
neoplastic clone. Morecontroversial was the
additional suggestion that the likelihood of
suchsequential genetic changes in tumor cells
was enhanced by increased genetic instability
in these cells, acquired as part ofthe neoplastic
process. I suggested several possible mecha-
nisms for this increased lability but was able
to provide little firm evidence. -

The initial reaction to this article was gen-
erally favorable despite its rather pessimistic
implications for simple answers tocancer ther-
apy. Subsequent work, particularly on themo-
lecular genetics of neoplasia, has confirmed
much of the clonal evolution concept, and it
is increasingly clear that sequential involve-
ment of critical genes underlies many aspects
of tumor development.4 Most of these recent
studies have dealt with genes involved in
growth regulation (oncogenes), and in a recent
update of the 1976 paper5 I suggested that
the time is now ripe formolecular genetic in-
vestigation of other key aspects of tumor pro-
gression, such as how the malignant cell ac-
quires the capacity for invasion and metasta-
sis. Interestingly, relatively little new informa-
tion has been learned on the nature and extent
of acquired genetic instability in tumor cells,
although considerable progress has been made
on the molecular basis of constitutional chro-
mosomal fragility.6
The “clonal evolution” article appears to

have been widely cited because it provided a
reasonable framework within which to inves-
tigate anddiscuss various aspectsof neoplasia.
As such, it may have been useful, but success
in dealing with the cancer problemmust ulti-
mately lie in precise characterization of the
somatic genetic events and related host re-
sponses, which this model only suggested.
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Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive 
landscapes of tissue ecosystems. The dynamics are complex, with highly variable patterns of genetic diversity and 
resulting clonal architecture. Therapeutic intervention may destroy cancer clones and erode their habitats, but it can 
also inadvertently provide a potent selective pressure for the expansion of resistant variants. The inherently Darwinian 
character of cancer is the primary reason for this therapeutic failure, but it may also hold the key to more effective control.

Clonal evolution in cancer
Mel Greaves1 & Carlo C. Maley2

Cancer is a major cause of death throughout the world and, 
despite an extraordinary amount of effort and money spent, 
the eradication or control of advanced disease has not been 

achieved1. Although we have a much greater understanding of can-
cer biology and genetics2, translation into clinical practice needs 
to allow for the cellular complexity of the disease and its dynamic, 
evolutionary characteristics. These features provide both barriers 
to, and opportunities for, successful treatment. 

In 1976, Peter Nowell3 published a landmark perspective on cancer 
as an evolutionary process that is driven by stepwise, somatic-cell 
mutations with sequential, subclonal selection. This is a parallel to 
Darwinian natural selection, with cancer clones as the equivalent 
of asexually reproducing, unicellular quasi-species. Modern cancer 
biology and genomics have validated cancer as a complex, Darwin-
ian, adaptive system4,5 (Box 1 and Supplementary Information). 

Cancer-clone evolution takes place within tissue ecosystem habi-
tats. These habitats have evolved over a billion years to optimize 
multicellular function but restrain clonal expansion of renegade 
cells. However, the resilience of multicellular and long-lived animals 
depends on the phenotypic properties that, if not tightly regulated, 
drive or sustain malignancy: that is, cellular self-renewal and stabi-
lization of telomeres, which allow extensive proliferation, angiogen-
esis, cell migration and invasion6.

The long time period usually required for cancer symptoms to 
emerge and the complexity of the resultant mutations is, in part, 
a reflection of the sequential and random searches for phenotypic 
solutions to constraints from the micro-environment. The evolu-
tionary progression of cancer is usually stalled or aborted, as shown 
by the high frequency of clinically covert premalignant lesions7–9. 
Cancer-suppressive mechanisms relegate most cancers to old age, 
when they have little effect on the reproductive fitness of their hosts.

Limited resources, environment architecture and other constraints 
of the micro-environment limit the size of solid tumours at every 
stage of their progression. Even advanced malignancies can show 
Gompertzian growth10 — the cancer cell doubling time (around 
1–2 days) is orders of magnitude faster than tumour doubling time 
(around 60–200 days)10 — implying that the vast majority of cancer 
cells either die before they can divide11 or are kept from dividing by 
the tumour micro-environment. Thus, natural selection in tumours, 
in the same way as selection in organisms, takes place through com-
petition for space and resources.

Oncologists change cancer-clone dynamics by introducing a 
potent source of artificial selection in the form of drugs or radiation, 
but evolutionary principles still apply. Usually, treatment will result 

in massive cell death, which provides a selective pressure for the 
proliferation of variant cells that resist treatment (the mechanisms 
for this are discussed later). Furthermore, many cancer therapeutics 
are genotoxic; cells surviving treatment, which could then go on to 
regenerate the cancer, may have mutated further, resulting in cells 
with improved fitness and malignant potential. 

The tools of and insights from evolutionary biology and ecology 
can therefore be applied to the dynamics of cancer before and after 
treatment to explain the modest returns from cancer therapy. We 
show that cancer is an inherently evolutionary process and suggest 
alternative strategies for effective control.

Mutational drivers and clonal dynamics
The basic principle of a Darwinian evolutionary system is the 
purposeless genetic variation of reproductive individuals who are 
united by common descent, together with natural selection of the 
fittest variants. Cancer is a clear example of such a system. Most 
mutational processes have a bias at the DNA sequence level. The 
particular mutational spectra in a cancer cell can be a reflection of 
error-prone repair processes or associated with a genotoxic exposure 
(for example, cigarette carcinogens, ultraviolet light and chemother-
apeutic drugs2). The patterns of genetic instability (chromosomal 
or microsatellite) in cancer cells may reflect exposure to, and the 
selective pressure exerted by, some classes of chemical carcinogens2. 
Nevertheless, for the functions encoded in genes, mutagenic pro-
cesses are essentially blind or non-purposeful (with the exception 
of intrinsic mutagenic or recombinatorial enzymes preferentially 
targeting lymphoid immunoglobin or T-cell receptor genes12). The 
recurrent, mutation-endowed fitness traits in cancer reflect the 
potent impact clonal selection can have.

Clones evolve through the interaction of selectively advantageous 
‘driver’ lesions, selectively neutral ‘passenger’ lesions and deleterious 
lesions (a ‘hitchhiker’ mutation in evolutionary biology is equivalent 
to a passenger mutation in cancer biology). In addition, ‘mutator’ 
lesions increase the rate of other genetic changes13,14, and micro-
environmental15 changes alter the fitness effects of those lesions. 
The identification of driver lesions is supported by the independent 
observation that these lesions occur more frequently in multiple 
neoplasms than would be expected in the normal background muta-
tion rate, that they are associated with clonal expansions16,17 and 
from the type of mutation seen (missense, nonsense, frameshift, 
splice site, phosphorylation sites and double deletions)18–20, par-
ticularly if the gene involved has a known role in cellular processes 
relevant to oncogenesis. The evidence gained from genetic studies 

3 0 6  |  N A T U R E  |  V O L  4 8 1  |  1 9  J A N U A R Y  2 0 1 2

doi:10.1038/nature10762
REVIEW

© 2012 Macmillan Publishers Limited. All rights reserved

Greaves and Maley, Nature 2012



Myeloma evolves in discrete steps that are 
clinically (and biologically?) recognizable

Nature Reviews | Cancer

Primary genetic events:
r IGH@ translocations
r Hyperdiploidy 

MGUS Smouldering
myeloma Myeloma Plasma cell

leukaemia

Initiation Progression 

Bone marrow Peripheral bloodGerminal centre

Post-germinal-
centre B cell

Clonal advantage 

Inherited variants

Secondary genetic events:
r Copy number abnormalities
r DNA hypomethylation
r Acquired mutations

Tumour cell diversity

Genetic lesions

Competition selection for bone marrow niche Migration and
Hounder eȭect

Centroblast
A lymphocyte that has a large, 
non-cleaved nucleus. B cells 
that are proliferating and 
undergoing affinity maturation 
in response to stimulus, within 
the germinal centre, are termed 
centroblasts. These cells 
mature to centrocytes within 
the germinal centre before they 
leave to become plasmablasts.

Unfolded protein response
(UPR). This is a cellular stress 
pathway that is activated in 
response to an accumulation of 
unfolded or misfolded proteins. 
In myeloma plasma cells this 
pathway is crucial for dealing 
with the large quantities  
of immunoglobulin (or 
paraprotein) that are produced 
by the cells. Disruption of this 
pathway in plasma cells can 
lead to apoptosis.

Serological memory
The presence of 
immunoglobulin in the serum, 
usually from mature B cells 
that have undergone somatic 
hypermutation and class switch 
recombination in a germinal 
centre.

immunoglobulin isotype seen in MGUS is predominately 
IgG or IgA, and heterogeneity is not evident11. Based on 
these data it is reasonable to propose that the original 
MPC is generated from a memory B cell and that, fol-
lowing passage through a germinal centre reaction, is 
immortalized by the acquisition of one of the two major 
initiating events that lead to myeloma: either an aber-
rant CSR event on the non-functional IgH allele, (that is, 
the allele not used to make a paraprotein or functional 
antibody), or through hyperdiploidy. Although aberrant 
CSR rearrangements have been suggested to be initiating 
events as they are present in the majority of clonal cells, 

it seems that in some cases such translocations are only 
seen in a subpopulation of the clonal cells. An explana-
tion for this observation needs to be built into models of 
the aetiology of myeloma25,30.

Having been immortalized at the germinal centre 
stage the progeny migrate to the bone marrow where 
they continue to evolve. During these processes the 
interaction with the supportive stromal environment is 
crucial for their survival, as it is for the survival of normal 
plasma cells. Importantly, the derangement of stroma–
MPC interactions can alter telomere length, thus poten-
tially affecting the immortalization of MPCs31–33 (FIG. 4). 

Figure 2 | Initiation and progression of myeloma. Monoclonal gammopathy of undetermined significance (MGUS) is 
an indolent, asymptomatic condition that transforms to myeloma at a rate of 1% per annum. Smouldering myeloma lacks 
clinical features; by contrast, symptomatic myeloma has various clinical features that are collectively referred to as 
calcium, renal, anaemia and bone abnormalities (CRAB), which provide an indication that treatment is required. Later in 
the disease progression, the myeloma plasma cells are no longer restrained to growth within the bone marrow and can be 
found at extramedullary sites and as circulating leukaemic cells. It is thought that transition through these different states 
requires the acquisition of genetic abnormalities that lead to the development of the biological hallmarks of myeloma.  
The initial deregulated cell belongs to the MGUS clone; however, subsequent to the development of sufficient genetic 
abnormalities, it acquires a clonal advantage, expands and evolves. This clonal evolution is through the branching 
pathways that are typically associated with Darwin’s explanation of the origin of species. During the evolution of MGUS to 
myeloma these processes lead to the development of numerous ecosystems, which correspond to the clinically 
recognized phases of disease. At the end of this evolutionary process, at the stage of plasma cell leukaemia (PCL), the 
clone is proliferative and no longer confined to the bone marrow; the clone expands rapidly and leads to patient death. 
Cells at this stage are substantially altered genetically, and the precursor subclones will be present at low levels because of 
competition for access to the stromal niches in the bone marrow: these clones may be eradicated by more aggressive 
clones. In evolutionary terms, this phase of disease could be considered to be initiated by a migration and founder effect 
whereby a cell that is able to survive and grow in the peripheral blood is faced with no competition, thus limiting its clonal 
expansion. IGH@, immunoglobulin heavy chain locus.
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The mechanisms involved in the progression from monoclonal gammopathy of undetermined significance (MGUS) and smoldering

myeloma (SMM) to malignant multiple myeloma (MM) and plasma cell leukemia (PCL) are poorly understood but believed to

involve the sequential acquisition of genetic hits. We performed exome and whole-genome sequencing on a series of MGUS

(n¼ 4), high-risk (HR)SMM (n¼ 4), MM (n¼ 26) and PCL (n¼ 2) samples, including four cases who transformed from HR-SMM to

MM, to determine the genetic factors that drive progression of disease. The pattern and number of non-synonymous mutations

show that the MGUS disease stage is less genetically complex than MM, and HR-SMM is similar to presenting MM. Intraclonal

heterogeneity is present at all stages and using cases of HR-SMM, which transformed to MM, we show that intraclonal

heterogeneity is a typical feature of the disease. At the HR-SMM stage of disease, the majority of the genetic changes necessary to

give rise to MM are already present. These data suggest that clonal progression is the key feature of transformation of HR-SMM to

MM and as such the invasive clinically predominant clone typical of MM is already present at the SMM stage and would be

amenable to therapeutic intervention at that stage.

Leukemia advance online publication, 19 July 2013; doi:10.1038/leu.2013.199

Keywords: myeloma; smoldering; progression; genome; sequencing

INTRODUCTION

A key question in cancer biology is how a cell transforms from an

essentially benign premalignant condition to a malignant invasive

state. Some hints as to how this happens can come from the study

of multiple myeloma (MM), which is characterized by the prolifera-

tion of abnormal plasma cells (PC)1 that have fewer mutations than

the more complex solid tumors and as such provides a good

model in which to address the question of cancer progression.

Current understanding of MM development is thought to involve a

multistep transformation process, occurring as a consequence of

the sequential acquisition of genetic hits that deregulate the

behavior of a normal PC, Figure 1a. The first stage of this process is

a benign premalignant condition, known as monoclonal gammo-

pathy of undetermined significance (MGUS) that transforms to MM

at a rate of 1% per annum.2,3 The next step of MM evolution is the

development of smoldering myeloma (SMM) that shares the same

morphological features as symptomatic MM, but lacks evidence of

end-organ damage; 4 and progresses to MM at a rate of 10% per

annum.2 In the final stage of the transformation process, the

malignant PC clone gains independence from the bone marrow

(BM) microenvironment, presenting either as PC leukemia (PCL) or

as extra-medullary myeloma.5

Translocations, involving the immunoglobulin heavy-chain (IGH)

locus, or hyperdiploidy are seen as primary events in myeloma

that are present in 100% of cells but these alone are not sufficient

to result in clinically invasive myeloma, given that they can be

found in patients with MGUS and may be stable for many years.6

Therefore, there must be additional genetic events, which

contribute toward disease progression leading to the invasive

stages of the disease. There is significant interest in defining these

driver mutations that push the malignant clone toward more

invasive behavior, as they constitute good therapeutic targets.

The main approach to identifying these variables has been

through comparing the genetics of samples taken from different

individuals who have MGUS, SMM or MM. As a result of such

studies, we have identified a number of lesions, which are

known to contribute to disease progression including an

increased frequency of copy number abnormalities,7,8 genome-

wide hypomethylation and gene-specific hypermethylation,9,10

secondary translocations (often involving MYC)11 and altered gene

expression.12,13 A more elegant way of accurately defining the

genetic factors associated with disease progression is to study

sequential samples from the same patient as they progress from

one clinical stage to another, yet few such studies have done this

because of the difficulty in obtaining paired samples from the

same individual. The limited number of studies that have taken

this approach, however, have been very informative showing that

the frequency of genomic alterations, such as translocations and
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Spatial genomic heterogeneity in multiple myeloma
revealed by multi-region sequencing
L. Rasche1, S.S. Chavan1, O.W. Stephens1, P.H. Patel1, R. Tytarenko1, C. Ashby1, M. Bauer 1, C. Stein1,
S. Deshpande1, C. Wardell1, T. Buzder1, G. Molnar1, M. Zangari1, F. van Rhee1, S. Thanendrarajan1, C. Schinke1,
J. Epstein1, F.E. Davies1, B.A. Walker 1, T. Meissner2, B. Barlogie1, G.J. Morgan1 & N. Weinhold1

In multiple myeloma malignant plasma cells expand within the bone marrow. Since this site

is well-perfused, a rapid dissemination of “fitter” clones may be anticipated. However,

an imbalanced distribution of multiple myeloma is frequently observed in medical imaging.

Here, we perform multi-region sequencing, including iliac crest and radiology-guided focal

lesion specimens from 51 patients to gain insight into the spatial clonal architecture.

We demonstrate spatial genomic heterogeneity in more than 75% of patients, including

inactivation of CDKN2C and TP53, and mutations affecting mitogen-activated protein kinase

genes. We show that the extent of spatial heterogeneity is positively associated with the size

of biopsied focal lesions consistent with regional outgrowth of advanced clones. The results

support a model for multiple myeloma progression with clonal sweeps in the early phase

and regional evolution in advanced disease. We suggest that multi-region investigations

are critical to understanding intra-patient heterogeneity and the evolutionary processes in

multiple myeloma.
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SUMMARY

We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma

(MM) patients and identified significantly mutated genes and copy number alterations and discovered puta-

tive tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed

frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and

DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and mul-

tiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient.

In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth

promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogene-

ity analysis for treatment decisions.

INTRODUCTION

We previously reported the sequencing of 38 matched tumor/

normal multiple myeloma (MM) pairs, and that report of the

genomic landscape of MM pointed to a number of recurrently

mutated genes (e.g., FAM46C and DIS3) that are likely causal

drivers of the disease (Chapman et al., 2011). However, that

study design was only powered to detect commonly mutated

genes, not less commonly mutated genes, due to the weak sta-

tistical power provided by the small sample size. It also did not

examine copy number alterations, leading to homozygous dele-

tions or loss of heterozygosity (LOH), or clonal heterogeneity due

to the modest sequence coverage (!303) of those whole

genome sequences.

The identification of driver mutations in MM holds great prom-

ise for personalized medicine, whereby patients with particular

mutations would be treated with the appropriate targeted ther-

apy (Fonseca et al., 2009; Mahindra et al., 2012; Palumbo and

Anderson, 2011). However, if the mutation is present in only a

fraction of the cells, one might doubt whether such targeted

Significance

A vision for precision cancer medicine calls for the deployment of molecularly targeted therapeutics in genetically defined

patient populations. A first step in that process involves a description of the genetic landscape of cancer.W
edescribe here a

more comprehensive characterization of the MM genome, identifying recurrently mutated genes, copy number alterations,

and signaling pathways. We find evidence for extensive clonal heterogeneity in the disease, a finding that may complicate

the interpretation of genome-inspired clinical trials forMM.More generally, our findings indicate a
need for the delineation of

clonal heterogeneity in genome-based diagnostic approaches to cancer.
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Heterogeneity of genomic evolution and mutational

profiles in multiple myeloma

Niccolo Bolli 1,2, Hervé Avet-Loiseau3,4, David C. Wedge1, Peter Van Loo1,5, Ludmil B. Alexandrov1,
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Stephane Minvielle11,12, Philippe Moreau13, Michel Attal 14, Thierry Facon15, P. Andrew Futreal 1,w,

Kenneth C. Anderson8, Peter J. Campbell 1,2
& Nikhil C. Munshi8,9

Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely

understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number

profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex

subclonal structure and show clusters of subclonal variants, including subclonal driver

mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evo-

lution, differential clonal response and branching evolution. Diverse processes contribute to

the mutational repertoire, including kataegis and somatic hypermutation, and their relative

contribution changes over time. We find heterogeneity of mutational spectrum across

samples, with few recurrent genes. We identify new candidate genes, including truncations of

SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is

heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics

of evolution, which may impact prognostic stratification, therapeutic approaches and

assessment of disease response to treatment.
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M
ultiple myeloma is a neoplastic plasma cell disorder that is 

characterized by clonal proliferation of malignant plasma 

cells in the bone marrow. Despite improved survival rates 

in the past decade, therapy is not curative, and almost all patients 

relapse1. The clinical spectrum of the disease includes asymptom-

atic conditions such as monoclonal gammopathy of undetermined 

significance (MGUS), a condition in which limited suspected malig-

nant plasma cells in the bone marrow produce an abnormal mono-

clonal antibody (M-protein) in the blood, and smoldering multiple 

myeloma (SMM), a more advanced stage with a higher proportion 

of malignant plasma cells in the bone marrow and/or M-protein in 

the blood2,3. The rates of progression from MGUS and SMM into 

active myeloma are approximately 1% and 10% per year, respec-

tively4. The genetic landscape underlying myeloma was mapped in 

several foundational genomic studies5–9, and gene expression pro-

filing cohorts of individuals with multiple myeloma (such as the 

Multiple Myeloma Research Foundation’s CoMMpass Study) were 

further shown to be effective in predicting the risk of disease pro-

gression and survival10–12.

The progressive nature of the disease makes it essential to 

develop tools for risk stratification and early detection of pre-malig-

nant states, including solutions for molecular characterization of 

bone marrow aspiration procedures and accurate liquid biopsies. 

The large plasma cell heterogeneity in early disease stages makes 

it difficult to evaluate precisely the state of asymptomatic patients, 

severely limiting the possibilities for preventive treatments and 

restricting clinical practice to ‘watchful waiting’4. Yet current strate-

gies for genomic sequencing and transcriptional analysis in cancer 

were developed for mapping bulk samples from primary tumors 

and metastases and therefore lack the resolution and accuracy for 

characterizing small tumorigenic subpopulations that are likely 

driving MGUS, SMM and multiple myeloma residual disease pro-

gression. Single cell genomic technologies are opening the way for 

the development of such assays13–16.

Here, we report the first comprehensive single cell RNA profil-

ing of newly diagnosed asymptomatic (7 MGUS and 6 SMM) and 

symptomatic (12 multiple myeloma and 4 primary light chain (AL) 

amyloidosis) individuals encompassing the different clinical spectra 

Single cell dissection of plasma cell heterogeneity 

in symptomatic and asymptomatic myeloma

Guy Ledergor1,2,22, Assaf Weiner1,22, Mor Zada1, Shuang-Yin Wang1, Yael C. Cohen3,4, Moshe E. Gatt5,6, 

Nimrod Snir4,7, Hila Magen4,8, Maya Koren-Michowitz4,9, Katrin Herzog-Tzarfati4,9, Hadas Keren-Shaul1,10,  

Chamutal Bornstein1, Ron Rotkopf10, Ido Yofe1, Eyal David1, Venkata Yellapantula11,12, Sigalit Kay3, 

Moshe Salai4,7, Dina Ben Yehuda5,6, Arnon Nagler4,8, Lev Shvidel6,13, Avi Orr-Urtreger4,14, 

Keren Bahar Halpern15, Shalev Itzkovitz15, Ola Landgren16, Jesus San-Miguel17, Bruno Paiva17, 

Jonathan J. Keats18, Elli Papaemmanuil12, Irit Avivi3,4, Gabriel I. Barbash19, Amos Tanay20,21 and Ido Amit" "1*

Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease 

heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single 

cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, includ-

ing 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple 

myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with mul-

tiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we 

detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications 

for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection 

of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting 

blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients.
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Abstract: Myeloma is characterized by extensive inter-patient genomic heterogeneity due to multiple
different initiating events. A recent multi-region sequencing study demonstrated spatial differences, with
progression events, such as TP53 mutations, frequently being restricted to focal lesions. In this review
article, we describe the clinical impact of these two types of tumor heterogeneity. Target mutations are
often dominant at one site but absent at other sites, which poses a significant challenge to personalized
therapy in myeloma. The same holds true for high-risk subclones, which can be locally restricted,
and as such not detectable at the iliac crest, which is the usual sampling site. Imaging can improve
current risk classifiers and monitoring of residual disease, but does not allow for deciphering the
molecular characteristics of tumor clones. In the era of novel immunotherapies, the clinical impact
of heterogeneity certainly needs to be re-defined. Yet, preliminary observations indicate an ongoing
impact of spatial heterogeneity on the efficacy of monoclonal antibodies. In conclusion, we recommend
combining molecular tests with imaging to improve risk prediction and monitoring of residual disease.
Overcoming intra-tumor heterogeneity is the prerequisite for curing myeloma. Novel immunotherapies
are promising but research addressing their impact on the spatial clonal architecture is highly warranted.

Keywords: multiple myeloma; spatial heterogeneity; risk stratification; minimal residual disease;
targeted therapy; clinical imaging; immunotherapy; daratumumab

1. Introduction

Multiple myeloma (MM) is a highly heterogeneous disease of clonal plasma cells (PC), which
accumulate in the bone marrow (BM). While some MM patients suffer from extensive bone disease
with presence of multiple osteolytic lesions, other patients have cytopenias as leading clinical problem,
caused by an obliterative BMPC infiltration and other factors [1]. One-third of newly diagnosed (ND) MM
patients present with renal failure due to cast nephropathy, amyloidosis, light or heavy chain deposition
disease, and/or hypercalcemia [2]. Extramedullary disease (EMD) may be present, as well as elevated
counts for circulating PCs, with <5% of NDMM patients having plasma cell leukemia [3]. Patients with
multiple osteolytic lesions according to computer tomography (CT) scans may have a low BMPC infiltration
at the iliac crest site. This pattern, which is called macrofocal disease, is seen in 6% of NDMM patients [4].

Survival outcomes reflect disease heterogeneity in MM. On the one hand, MM patients with a
progression-free survival of more than 15 years, who can be considered to be “functionally” cured, have
been observed [5]. On the other hand, a subgroup of ⇡15% of patients experience dismal outcomes
with a median survival of less than 2 years [6]. In the last decade, the molecular makeup of MM has
been extensively investigated and inter-patient and intra-tumor heterogeneity have been identified as

Int. J. Mol. Sci. 2019, 20, 1248; doi:10.3390/ijms20051248 www.mdpi.com/journal/ijms
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ABSTRACT

Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma 
cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). 
To provide novel information concerning the mutational profile of this disease, we 
performed the whole-exome sequencing of a prospective series of 12 pPCL cases 
included in a Phase II multicenter clinical trial and previously characterized at clinical 
and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 
643 genes, with a mean of 166 variants per sample, and only few variants and genes 
recurrent in two or more samples. An excess of C > T transitions and the presence of 
two main mutational signatures (related to APOBEC over-activity and aging) occurring 
in different translocation groups were observed. We identified 14 candidate cancer 
driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA 
metabolism and protein folding. Furthermore, integration of mutation data with copy 
number alteration profiles evidenced biallelically disrupted genes with potential tumor 
suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell 
cycle checkpoint resulted the most affected functional pathways. Sequencing results 
were finally combined with gene expression data to better elucidate the biological 
relevance of mutated genes. This study represents the first whole-exome sequencing 
screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational 
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Our knowledge of myeloma genetics re-

mained limited and lagged behind many

other hematologic malignancies because

of the inherent difficulties in generating

metaphases within the malignant plasma

cell clone. With the development of mo-

lecular techniques (microarrays and next-

generation sequencing), our understanding

has been highly improved in the past

5 years. These studies have not only con-

firmed the prevalence of wide heterogene-

ity in myeloma at the molecular level, but

has also provided a much clearer picture

of the disease pathogenesis and progres-

sion. Whether these data will enable im-

provements in the therapeutic approach is

still a matter of debate. The next improve-

ment will come from detailed analyses of

thesemolecular features to try tomove from

a treatment fitted to every patient to indivi-

dualized therapies, taking into account the

complexity of the chromosomal changes,

the mutation spectrum, and subclonality

evolution. (Blood. 2015;125(12):1870-1876)

Introduction
Multiple myeloma (MM) is a heterogeneous hematologic malignancy

that occurs mainly in the elderly population (median age at diagnosis

;70 years). Because of major improvements in the general care of pa-

tients over the past 50 years, leading to a marked increase in longevity,

the incidence of MM is increasing worldwide. It is currently accepted

that allMMcases are precededby an asymptomatic expansion of clonal

plasma cells, known as monoclonal gammopathy of undetermined

significance (MGUS), and smoldering MM (SMM).1,2A fraction of

these individuals with MGUS or SMM will evolve to symptomatic

MM, but most of theMGUS cases will remain totally asymptomatic.

Symptomatic MM is clinically characterized by lytic bone disease,

anemia, hypercalcemia, renal failure, and susceptibility to bacterial

infections. Why some MGUSs will remain totally asymptomatic for

decades whereas others will evolve to overt MM is currently un-

known, but the main hypothesis is the occurrence of “malignant”

genetic events in evolving patients. To understand these events,

a large amount of work has been dedicated to dissect the oncogenesis

of MM.

Cell of origin
Plasma cells represent the final differentiation stage of B cells. The first

steps of differentiation occur within the bonemarrow.At themolecular

level, thefirst stepsof this differentiationprocessare the rearrangements

of the heavy chain immunoglobulin (Ig) gene (IGH). This gene is a very

large gene (;2 Mb), presenting 4 major domains: the variability

domain (VH, containing more than 100 DNA segments), the diversity

domain (DH, containing 27 DNA segments), the joining domain

(JH, containing6DNAsegments), and the constant domain (containing

9 DNA segments). The first rearrangements are DNA deletions com-

bining 1 DH segment to 1 of the 6 JH segments. These deletions are

supposed to be stochastic, independently of any antigen pressure. If

molecularly productive, the pro-B cell continues its differentiation by

combining this DH-JH segment with a VH segment. These rearrange-

ments are made and regulated by a specific recombinase enzyme, the

recombination activating genes (RAG), which recognizes specific

DNA motifs within the DH, JH, and VH segments. If these re-

arrangements are in frame, or “productive,” the pre-B cell will then

rearrange the light chain genes, IGLk and IGLl. It first attempts to

rearrange the IGLk gene. If productive, the mature B cell will then

be able to produce IgMk, which is expressed at the B-cell surface. If

unsuccessful (mainly by non–in-frame rearrangements), theB cellwill

then rearrange the IGLl gene, leading to the production of an IgMl.

This process explains the disequilibrium in the type of B cells, two-

thirds expressing an IgMk at the membrane. These mature B cell will

then quit the bonemarrow to colonize the secondary lymphoid organs

to continue its maturation. This second part of differentiation will

become antigen-dependent, in relationshipwith dendritic and T cells.

Within the germinal centers of the secondary lymphoid organs,

a second type of molecular rearrangement will occur, known as the

somatic hypermutation (SMH) process. Stochastic mutations will be

produced within the VDJ segment by a specific enzyme, activation-

induced deaminase. Only B cells with mutations improving the

specificity of the antibody for the antigen will survive, the others

dying via apoptosis. The last rearrangement process also occurs in

the secondary lymphoid organs and is known as the class switch

recombination (CSR). During this process, specific DNA segments

known as switch regions will be recombined on the dependence

of the activation-induced deaminase enzyme, with deletion of

the interswitch region DNA. The mature B cell will then express

a different Ig, either IgG, IgA, or IgE. Finally, these mature B cells

will either differentiate in memory B cells or in long-lived plasma

cells, which will return to bone marrow.
The oncogenic transformation in MM is thought to occur within

these secondary lymphoid organs. Several pieces of evidence support

this hypothesis (Figure 1). First, malignant plasma cells present a high

rate of somatic mutations, with no heterogeneity, suggesting that the

oncogenetic event occurred after the end of the SMH process, which
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SMM is heterogeneous and current risk scores do not 
en*rely capture its variability

Kyle et al, NEJM 2007
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protein level of 0.1 g or less per 24 hours was found 
in 84%; only four patients (1.5%) had a level of 
more than 1.0 g per 24 hours.

The bone marrow aspirate and biopsy speci-
mens were examined in all 276 patients (Fig. 1). 
In the plasma-cell category, the most common 
proportion was 15 to 19%. Of the 276 patients, 
10% had less than 10% plasma cells in the mar-
row, and 10% had 50% or more plasma cells. Cy-
clin D1 was expressed by the plasma cells in 18% 
of the bone marrow specimens.

Outcome
During 2131 cumulative person-years of follow-up 
(range, 0 to 29; median, 6.1), 85% of the patients 
with smoldering multiple myeloma died (median 
follow-up of those still living, 11.6 years). During 
this period, active multiple myeloma developed in 
158 patients (57%), who had a median survival af-
ter the time of diagnosis of 3.4 years; amyloidosis 
developed in 5 (2%) (Table 1). The cumulative prob-
ability of progression to active multiple myeloma 
or amyloidosis was 51% at 5 years, 66% at 10 years, 
and 73% at 15 years; the median time to progres-
sion was 4.8 years (Fig. 2). The overall risk of pro-
gression was 10% per year for the first 5 years, ap-
proximately 3% per year for the next 5 years, and 
1% per year for the last 10 years.

The number of patients with progression to ac-
tive multiple myeloma was 522 times the number 

of persons without smoldering multiple myeloma 
who would be expected to have active disease, and 
the risk of amyloidosis was increased by a factor of 
50 (Table 1). Of 16 patients with Durie–Salmon 
stage II disease, 15 had progression to active mul-
tiple myeloma; both patients with Durie–Salmon 
stage III had progression to active multiple my-
eloma (median time to progression, 13.8 months 
and 15.1 months). Among patients with progres-
sion of smoldering multiple myeloma, 97% had 
progression to active multiple myeloma. Rates of 
death owing to other diseases, including cardio-
vascular and cerebrovascular disease and non–
plasma-cell cancers, were 18% at 5 years, 26% at 
10 years, 30% at 15 years, and 35% at 20 years. The 
overall rate of survival was 60% at 5 years, 34% at 
10 years, and 20% at 15 years (median, 6.3). In the 
128 patients who did not have progression to ac-
tive disease after more than 10 years after diag-
nosis, the disease was of the IgG subtype in 81%, 
the baseline median level of plasma cells in the 
bone marrow was 16%, the median spike in the 
serum monoclonal protein level was 2.8 g per 
deciliter, and uninvolved immunoglobulins were 
reduced in 78%.

Risk Factors for Progression
We evaluated baseline factors with respect to pro-
gression of smoldering multiple myeloma to active 
disease or amyloidosis in 163 patients. These fac-
tors included sex, hemoglobin level, a spike in the 
serum monoclonal protein level of 4 g per deciliter 
or more, the type of serum heavy chain, the serum 
albumin level, the presence and type of urinary 
light chain, a reduction in levels of uninvolved im-
munoglobulins, the expression of cyclin D1, the 
proportion of plasma cells in the bone marrow, in-
volvement of the interfatty marrow space, decreased 
proportion of normal hematopoietic elements (10% 
or more below the expected level for age), and as-
signment to prognostic group 1, 2, or 3 (as defined 
in the Methods section). Significant baseline risk 
factors for progression of smoldering multiple 
myeloma to active disease or amyloidosis in the 
univariate analysis included the level of serum 
monoclonal protein (P<0.001), the presence of IgA 
monoclonal protein (P = 0.004), the presence of uri-
nary light chain (P = 0.04), the extent of bone mar-
row involvement (plasma cells, ≥20%; P<0.001), 
a reduction in levels of uninvolved immunoglob-
ulins (P = 0.001), and the pattern of plasma-cell 
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High risk, probably already myeloma

Intermediate risk, needs evolution to 
progress to myeloma

Low-risk, MGUS-like 

Clinical question: can genomics help predict the outcome of SMM at 
diagnosis?

* Perez-Persona et al, Blood 2007 
Dispenzieri et al, Blood 2008
Rajkumar et al, Blood 2015



Asymptoma*c stages show a lower genomic complexity

ZANDECKI ET AL3688

Fig 2. Results from patient
no. 11. Various plasmacytic sub-
clones coexist, at diagnosis (A)
and 1 year later. (B) Closed cir-
cles correspond to subclones
that could be shown within BM
after dual interphase FISH; dot-
ted lines striping subclones
mean that the corresponding
subclones could not be shown.
Open circles are either hypothe-
sis or a clone that disappeared
at follow-up. Percentages are
the estimated amounts of each
subclone. A hypothetic link be-
tween the various subclones is
indicated with the open arrows.
D or T followed by one number
means Disomy or Trisomy for
the corresponding chromosome
(#).

Fig 3. Several cytogenetic
subclones may be shown or not
for patient no. 12, according to
the results from dual interphase
FISH (for details, see legend of
Fig 2).
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population of plasma cells in MGUS could also indicate that 
the  described aberrations are secondary changes occumng 
as a consequence of a yet  unidentified  primary transforming 
event. The observation of aneuploidy in subpopulations of 
plasma cells also in early stage MM is in agreement with 
this interpretation. Plasma cells from patients with MM  at 
stage I, however, tend  to have abnormalities of two or more 
chromosomes, a finding  that is rather infrequent in MGUS. 
Although we did  not have consecutive samples from patients 
that progressed from MGUS to MM, this result is consistent 
with  the  view that accumulation of chromosomal abnormali- 
ties parallels disease progression and/or transformation. 

A 
INCIDENCE OF ANEUPLOIDY (% OF PATIENTS) 

l;;[ P+X 

#3 #7 #l 1 #l 8 
CHROMOSOME 

B 

jl 20 

10 

0 

% PLASMA  CELLS WITH ANEUPLOIDY 

T 

#l 1 #l 8 #3 #7 

CHROMOSOME 
Fig 4. Incidence of aneuploidy (A) and  percentage of aneuploid 

plasma  cells (B) in patients with MGUS (01 and newly diagnosed 
MM at stage IA (m). In B, the mean + SD of aneuploid  plasma cells 
is  shown. 
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Table 3. Clinical and Laboratory  Features 

MGUS  With MGUS  Without 
Chromosomal Chromosomal 

Abnormalities by FISH Abnormalities by FISH 

Parameter  Mean t SD Range Mean t SD Range 

Age (years) 67.2 f_ 11.3  52-89  59.6 f 12.7  40-79 
BM plasma cells 

(%) 3.5 2 2.5  1-8  3.0 i 2.4  1-10 
M-component 

(g/dL) 1.9 2 0.57  0.6-3.1  1.6 i 0.55  0.9-2.5 
Total  protein Ig/L) 77.1 2 8.7  70.0-94.0  73.8 ir 11.4  46.5-89.0 
Albumin  (g/L) 46.1 f_ 5.8  35.3-59.0  44.3 2 7.1 27.4-53.7 
WBC 1x107~) 6.66 t 1.7  3.1-10.1  6.81 i 2.4  3.9-11.4 
Hb (g/dL) 12.6 z 2.3  7.0-15.4  12.6 i 2.1  8.1-15.1 
Platelets (x109/L) 239 2 61  119-342  285 t 110  132-540 
Creatinine (rng/dL) 1.0 2 0.15  0.7-1.2  1.0 i 0.43  0.7-2.23 
Calcium (mrnol/L) 2.3 L 0.2  1.9-2.6  2.3 i 0.2 2.1-2.6 
LDH IU/L) 175 t 50 114-267  167 2 46 80-252 
0-2 microglobulin 

(Fg/mL) 2.0 2 0.8 1.2-3.8  1.8 i 1.0  1.0-4.7 
CRP (mg/L) 0.7 2 0.5 0.3-2.1  0.7 2 0.4  0.2-1.6 

For all parameters, there  was no  statistically significant difference 
between the two groups of patients ( P  > .l, t-test). 

For a long time, MGUS was considered as a “benign” 
condition.’9 After  an appropriately long follow-up period, 
however, it has become clear that  MGUS may progress to 
MM or other lymphoproliferative disorders in a significant 
proportion of Based on the results presented in 
this report we conclude that MGUS has the chromosomal 
characteristics of a plasma  cell malignancy, which manifests 
itself as a symptomatic disease only  in some patients. It  is 
unclear which factors contribute to  the long clinical stability 
observed in patients with  MGUS.  At present, it also remains 
unclear whether the detection of chromosomal abnormalities 
will help identify MGUS patients with increased risk of 
progression to MM. At the  time of this analysis, MGUS 
patients with  and without chromosomal abnormalities by 
FISH were indistinguishable with respect to clinical and  lab- 
oratory features. Prospective follow-up is needed to deter- 
mine the clinical value of cytogenetic abnormalities in mono- 
clonal gammopathies. 
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(MMRF) Compass study (n . 800).23 We have reviewed our data
extensively, and we feel confident that they are accurate for the
included 18 patients. Given the small sample size in our study and the
observed results, we were unable to conduct further statistical analysis.
Future larger studies are needed to improve our understanding of
these topics. Avenues to consider in larger studies include stratifica-
tions (using predefined cutoffs) by plasma cell percentage, cytogenetic
status, lactate dehydrogenase, and other factors.

In summary, our study shows that 63% of patients with high-risk
smoldering myeloma treated with KRd-R therapy had sustained MRD
negativity up to 4 years after starting therapy. Furthermore, for the first
time, we show that patients with high-risk smoldering myeloma have a
lower frequency of mutational burden in significantly mutated myeloma
genes with less likelihood of NFKB pathway mutation involvement.
When paired with clinical data, these observations support a more
treatment-responsive biology compared with patients who have newly
diagnosed MM.
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Figure 4. Frequency of mutations in significantly recurrent MM genes among patients with high-risk smoldering myeloma or newly diagnosed MM.

Professional illustration by Patrick Lane, ScEYEnce Studios.
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Circulating tumor DNA is shed into the peripheral blood
(PB) by tumor cells and can be used as source of tumor
DNA for the identification of cancer-gene somatic muta-
tions, with obvious advantages in terms of accessibility.
In addition, the systemic origin of cell-free DNA (cfDNA)
allows catching the entire tumor heterogeneity.3 Tumor
cfDNA was identified in MM patients by preliminary
studies tracking the clonotypic V(D)J rearrangement as
disease fingerprint,4 or genotyping a highly restricted set
of cancer genes that were not specifically addressed to
resolve the typical MM mutational landscape.5-7 We
developed a CAPP-seq ultra-deep targeted next-genera-
tion sequencing (NGS) approach to genotype a gene
panel specifically designed to maximize the mutation
recovery in plasma cell tumors, and compared the muta-
tional profiling of cfDNA and tumor genomic DNA
(gDNA) of purified PCs from BM aspirates in a consecu-
tive series of patients representative of different clinical
stages of PC tumors ranging from monoclonal gammopa-
thy of undetermined significance (MGUS), to smoldering
MM, and symptomatic MM.

The study was based on a series of 28 patients with PC
disorders, whose clinical and molecular characteristics
were consistent with an unselected cohort of PC dyscra-
sia patients (Online Supplementary Table S1) [two had
MGUS, five smoldering MM (SMM), and 21 sympto-
matic MM]. The study was conducted according to good

clinical practice and the ethical principles outlined in the
Declaration of Helsinki. All patients provided written
informed consent. The following material was collected:
cfDNA isolated from plasma; tumor gDNA from CD138+

purified BM PCs for comparative purposes, and germline
gDNA extracted from PB granulocytes after Ficoll gradi-
ent separation, to filter out polymorphisms. The sam-
pling was done in 25 newly diagnosed and three
relapsed/refractory treated patients. A targeted rese-
quencing gene panel, including coding exons and splice
sites of 14 genes (target region: 31 kb: BRAF, CCND1,
CYLD, DIS3, EGR1, FAM46C, IRF4, KRAS, NRAS,
PRDM1, SP140, TP53, TRAF3, ZNF462; Online
Supplementary Table S2) was specifically designed and
optimized to allow a priori the recovery of at least one
mutation in 68% (95% confidence interval: 58-76%) of
patients, based on literature data.8-10 Ultra-deep NGS was
performed on MiSeq (Illumina) using the CAPP-seq
library preparation strategy (NimbleGen).11 The somatic
function of VarScan2 was used to call non-synonymous
somatic mutations, and a stringent bioinformatic pipeline
was developed and applied to filter out sequencing errors
(detection limit 3x10-3). The sensitivity and specificity of
plasma cfDNA genotyping were calculated in compari-
son with tumor gDNA genotyping as the gold standard.
Details of the experimental procedures are given in the
Online Supplementary Methods.

haematologica 2018; 103:e246
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Figure 1. Overview of the mutations identified in the PC dyscrasia series. (A) Mutations detected in plasma cfDNA and confirmed in tumor gDNA are filled in
red; mutations detected in tumor gDNA only are filled in blue. Each column represents one tumor sample and each row represents one gene. The fraction of
tumors with mutations in each gene is plotted (right). The number and the type of mutations in a given tumor are plotted above the heat map. Patients positive
for del(17p) are framed in black. (B) Bar graph of the allele frequencies in tumor gDNA of the variants that were discovered in plasma cfDNA (red bars) or missed
in plasma cfDNA (blue bars). The dashed line tracks the 5% allelic frequency threshold.
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copy number alterations, increases with disease progression,
but as a rule they are generally present during the early stages
of disease.14–18 Since such studies have been performed,
technology has moved on and the availability of genome-wide
analyses, such as massively parallel sequencing, has provided a
tool that is able to deliver an unbiased genome-wide assessment
of the changes present during the transition from one clinical
state to another.

Understanding the biology underlying cancer progression is
important for therapeutic strategies aimed at cancer control and is
being studied intensively. The results of recent analyses have
suggested that instead of following a linear multistep pathway
through this transformation process, progression is more likely to
develop via a branching evolutionary process, as first used by
Darwin to explain the evolution of species.19,20 This model of
cancer evolution requires the coexistence of multiple diverging
clones, the essential substrate for evolution, and has been
recently demonstrated in a number of different malignancies,
including MM.21–23 Even within such Darwinian models, it remains
important to understand what drives the competition
between clones in order to effectively manipulate it therapeu-
tically. Therefore, investigating the relationship between high-risk
(HR)SMM and MM in paired samples that have undergone the
SMM-MM transformation provides the opportunity to define
novel genetic hits that contribute to subclonal growth and
survival advantage that mediates the development of end-organ
damage. In this study, we have used massively parallel sequencing
to study the genetic makeup of the stages of MM and in particular
to investigate the genetic relationship of the transition from HR-
SMM to MM.

MATERIALS AND METHODS
Samples were derived from the QUIREDEX study (NCT00480363), where
HR-SMM cases were randomized to receive either therapy with lenalido-
mide and dexamethasone or to undergo longitudinal follow up only.
HR-SMM was defined as the presence of 410% PC in the BM and
a monoclonal component IgG X3 g/dl, IgA X2 g/dl or Bence Jones

proteinuria X1 g/24 h together with the absence of CRAB (calcium
increase, renal insufficiency, anemia, bone lesions).24 Patients meeting
either but not both of these two criteria were also included in the study if
they met the additional criteria of having X95% phenotypically aberrant
PC in the BM PC compartment (aberrant PC/BM PC) and immunoparesis.25

The BM samples were collected at the time of entering the study and
at disease progression to symptomatic myeloma. Patient characteristics
are shown in Supplementary Table 1. In all the BM samples, CD138-positive
PC isolation was carried out using the AutoMACs automated separation
system (Miltenyi-Biotec, Auburn, CA, USA). Purity was 495% in all SMM
cases. The systematic screening for genomic aberrations includes
interphase fluorescence in situ hybridization studies for detecting IGH
rearrangements (LSI IGH dual-color, break-apart rearrangement probe;
Abbott Molecular/Vysis, Des Plaines, IL, USA), 13q (LSI 13, RB1 13q14) and
17p deletions (LSI p53, 17p13.1) (Abbott Molecular/Vysis) as previously
described, and 1q gains (ON 1q21/SRD 1p36, Kreatech Diagnostics,
Amsterdam, Netherlands). Those SMM samples with IGH translocations
were explored for t(11;14)(q13;q32), t(4;14)(p16;q32) and t(14;16)(q32;q23)
with the corresponding dual-color, dual-fusion translocation probes from
Abbott Molecular/Vysis. The interphase fluorescence in situ hybridization
procedure has been described previously in detail.26 A total of 200
interphase nuclei were analyzed using the scoring criteria recommended
by the manufacturer. The cut-off level for the identification of IGH
translocations (fusion/break-apart probes) and 1q gains was set at 10% and
at 20% for numerical abnormalities, as recommended by the European
Myeloma Network fluorescence in situ hybridization workshop. All tests
were performed on the SMM sample and positive tests were repeated on
the progression to MM sample.

Approximately 100 ng of DNA underwent whole-genome sequencing
using 120-bp paired-end reads on a GAIIx (Illumina, Saffron Walden, UK) to
a median depth of 44!, with 99% of the genome covered at 41! and
96%420! coverage. From each patient, the non-involved peripheral
white blood cells were sequenced as well as BM-derived CD138-selected
cells from the HR-SMM diagnosis sample and the sample following
progression to MM. Two patients were also sequenced to a higher depth
by exome sequencing (see Supplementary Table 2 for metrics). In addition,
whole exome sequencing was performed in an identical manner following
exome capture using the Agilent SureSelect Human All Exon 50 Mb system
on four MGUS, 22 MM (previously published)27 and two PCL paired tumor/
normal samples (see Supplementary Table 2 for metrics). These additional
MM, MGUS and PCL samples were acquired at the Royal Marsden Hospital,
London.

Figure 1. The number of acquired mutations increases as disease progresses. (a) a schematic of disease progression from MGUS through
to PCL. (b) Boxplot showing the median number of acquired NS-SNVs increases as the disease progresses from MGUS through HR-SMM and
MM to PCL.
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cific SNV, CNA and clinical parameters are shown in
Online Supplementary Figure S9.

Interestingly, MGUS patients with CNA and/or IGH
translocations (n=23) had significantly higher numbers of
total SNV (P=8.17×10-5), exonic SNV (P=1.43×10-4), NS-SNV
(P=1.82×10-3) and synonymous SNV (S-SNV) (P=3.75×10-

4) in comparison to MGUS patients without any of these
changes (n=10) (Table 2). We also found a positive corre-
lation of increasing number of SNV and chromosomal
abnormalities (Figure 3).

Risk stratification of patients with monoclonal 
gammopathy of undetermined significance

Using a risk-stratification model,4 we divided 32 MGUS
patients into low risk (n=14), intermediate-low risk (n=9)
and intermediate-high risk (n=9). We found that the medi-
an number of CNA and/or IGH translocations increased
from low to intermediate-low and intermediate-high risk
groups: 0 (range, 0–10), 4 (range, 0–15) and 6 (range, 0–10),
respectively (Table 3). Gain of 1q [present in 7.1% (1/14),
11.1% (1/9) and 66.7% (6/9) patients, in the three risk
groups], as well as frequency of patients with at least one
structural CNA [14.3% (2/14), 55.6% (5/9) and 77.8%
(7/9), respectively], also increased with risk group. We did
not find a clear increase of SNV across the risk groups
(Table 3).

Presence of clonal abnormalities is associated with
higher risk of progression

MGUS cases were divided into six groups based on the
structure of intratumor heterogeneity (Figure 4): 86.7%

(13/15) of cases with at least one clonal CNA and NS-SNV
showed intermediate-low/high risk, while other groups
had small proportions of cases with higher risk of progres-
sion (29.4%, 5/17, P=0.002). This fact was caused by the
association of clonal alterations with non-IgG variant
(50.0%, 8/16; others: 11.8%, 2/17; P=0.03) and abnormal
serum kappa/lambda free light chain ratio (73.3%, 11/15;
others: 23.5%, 4/17; P=0.02). Chromosome abnormalities
were preceded by gene mutations as a total of 63.6%
(21/33) of cases showed at least one NS-SNV with a 10%
or higher proportion than any CNA present. There were
no examples with CNA but without NS-SNV, and no
cases with a CNA at a frequency of 10% or greater than
that of any NS-SNV.

Discussion

MGUS is considered a relatively benign disease, being
present in 3% of the population >50 years old but without
evidence of end-organ damage. However, recent evidence
indicates that nearly all cases of MM are preceded by an
MGUS phase.31,32 Analysis of the genomes of MGUS sam-
ples has revealed that the genetic composition in this dis-
order is strikingly similar to that in MM, with the presence
of IGH translocations, hyperdiploidy, gain 1q, and dele-
tion 1p. However, these abnormalities are, in general,
present at lower frequencies in the MGUS population.12

These abnormalities have been characterized in MGUS
using classical cytogenetics and fluorescence in situ
hybridization, as well as mapping arrays to detect changes

Somatic mutations in monoclonal gammopathies

haematologica | 2017; 102(9) 1621

Table 2. Relationship between the number of single nucleotide variants and the presence of chromosomal abnormalities. 
SNV category At least one chromosomal No chromosomal P

abnormality (n = 23) abnormality (n = 10)
Median (range) Median (range)

Total SNV 102 (32–315) 29 (9–92) 8.17×10-5

Exonic SNV 30 (5–111) 11 (2–23) 1.43×10-4

NS-SNV 23 (4–70) 9 (0–24) 1.82×10-3

S-SNV 11 (1–42) 3 (1–6) 3.75×10-4

Chromosomal abnormalities include CNA tested by CGH+SNP arrays and IGH translocations defined by exome sequencing.

Figure 2. Number of single nucleotide variants in 33
patients with monoclonal gammopathy of undeter-
mined significance compared to 463 patients  with
newly diagnose multiple myeloma.

Mikulasova et al, 2017

NGS (whole exome, targeted)



Mutational landscape of SMM (n= 214)
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Significant arm level and focal CNAs
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Genomic landscape of progressors vs non-progressors (n = 85)
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Two genomic routes of evolu*on from SMM to MM
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These cases are 
- «de facto» MM already?

-dependent on the microenvironment?
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Structural events appear in a somewhat orderly fashion
opportunity to define what’s associated with initiation and what with progression
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Only two non-IGH/IGK/IGL kataegis events within the same
patient were not conserved during SMM progression, suggest-
ing most represent early events. Interestingly, kataegis was
associated with rearrangements, found in 60% of such regions
involving non-IGH/IGK/IGL loci. Breakpoints of such rear-
rangements were significantly closer to the kataegis region than
expected by chance (Fig. 5b, top), suggesting they may arise as
part of the same mutational process. In immunoglobulin
regions, where rearrangements were mostly composed of
deletions from the V(D)J recombination and class switch
recombination processes, this phenomenon was even more
pronounced (Fig. 5b, bottom). To look for mutational pro-
cesses operative around these events, we restricted mutational
signature analysis to kataegis regions, where we extracted 3
main signatures: nc-AID, APOBEC, and a third process not
included in COSMIC mutational signatures data set (http://
cancer.sanger.ac.uk/cosmic/signatures). The profile of this lat-
ter process was most similar to the canonical AID (c-AID)
mutational signature recently described in a chronic lympho-
cytic leukemia WGS study (Fig. 5c)29, and it was likely missed
by previous NNMF studies because it is very localized in the

genome and present in few types of cancers only. Consistent
with c-AID activity, we found this signature to be particularly
prevalent in IGH/IGK/IGL loci (Fig. 5d), and less so in other
regions (Fig. 5e). Overall, the combined effect of c-AID and
nc-AID was responsible for more than 70% of all substitutions
in kataegis regions (Fig. 5d, e), suggesting a causative role of
aberrant AID activity in shaping the early mutational repertoire
of neoplastic plasma cells, and not just a legacy of its physio-
logical activity in the germinal center.

Evolution of signatures over time. Comparing paired samples,
no significant differences were observed in the prevalence of the
five signatures during evolution, both in terms of absolute
numbers and relative contribution (Fig. 4d, e). These data suggest
that, independent from patterns of genomic evolution, the
mutational processes that shape the MM cell genome are already
operative at the smoldering stage. However, as mutations could
be clustered into clonal (early, present in the first transformed cell
and from there in all cells of the tumor) or subclonal (late,
acquired by a fraction of tumor cells after transformation and
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Fig. 3 Rearrangements prevalence and involvement in smoldering MM progression. a Bar plot representing the rearrangement prevalence in all smoldering
(x-label in red) and symptomatic MM patients (x-label in black), broken down by rearrangement type. b IGH (left) and MYC (right) translocated cases are
plotted by allelic fraction changes during progression. Each line is color-coded for each patient. Notably patient PD26409 (yellow) had four independent
MYC rearrangements, but only one increased its clonality upon progression to MM. c An example of progression associated with evolution of the clonal
fraction of a translocation with unknown driver potential
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achieve significance when paired with DIS3 mutation (PFS
p-value < 0.05, Table S17). In contrast to SMM, we
observed that IgL, rather than IgH or IgK MYC SV, was
associated with more rapid disease progression in NDMM
(Fig. S1) [14]. In a more focused analysis comparing
prognostic associations of MYC SV types (Ig, non-Ig, or
none), we observed that HRD cases with a non-Ig MYC SV
had uniquely beneficial prognosis with a significantly

reduced rate of progression (82% cases without PFS events
at 2-years compared to 59% in remaining cases, Fig. 2b),
while no difference in outcome was noted across MYC SV
type in non-HRD MM (Figs. S2 and S3). Both the combi-
nation of non-Ig MYC SVs with HRD positivity and IgL
MYC SV retained significant association with PFS in mul-
tivariate models, including covariates for key genomic
features (MMSET or MAF translocations, 1q gain, 13q loss,

Fig. 2 Progression in smoldering phase (SMM) and newly diagnosed
multiple myeloma (NDMM) and genomic copy number comparison of
monoclonal gammopathy of undetermined significance (MGUS),
SMM, and NDMM. An analysis of MYC structural variants (SVs) in
SMM cohort revealed that MYC rearrangements that juxtaposed any of
the Ig regions (five IgH, one IgL) had a rapid progression to multiple
myeloma (MM) (b). However, in NDMM, only cases with IgL MYC
SVs had inferior outcomes (see also Supplementary Fig. S1). Addi-
tionally, HRD cases harboring a Non-Ig MYC SV had a significant
association with improved performance (b) not observed for Non-

HRD (NHRD) cases (Supplementary Figs. S2 and S3). Across 23
MGUS, 90 SMM, and 612 NDMM cases, the percent of samples with
a gain and loss were determined at equal 30 Kb intervals across the
entire genome. A gain was denoted if copy number segment values at
given location was greater than log2(2.25/2) and loss if segment value
was below log2(1.30/2). Across entire chromosomes, many of the
copy number gains and losses are similarly prevalent across disease
stages, however gain of 1q and loss of 13q significantly increase in
frequency with disease stage, more so than any other chromosomes (c)

K. Misund et al.

Misund et al, Leukemia 2019
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Single cell RNAseq can iden*fy aggressive PCs within an 
indolent clone
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Fig. 2 | Intratumor heterogeneity in myeloma. a, Shown are P!values to reject the null hypothesis (that a cell belongs to the control plasma cell group) for 
all 20,586 cells from 40 individuals, including those with multiple myeloma and controls. Dots represent individual plasma cells, classified as either normal 
(black) or abnormal (red; P!< !0.01, one sided t-test with Bonferroni correction; see Online Methods). Individuals with multiple myeloma are ordered 
according to average score value from low to high. b, Intratumor heterogeneity measure for 21 individuals with abnormal plasma cells (as classified by the 
score used in a). Shown are Pearson correlations within and between clusters (for each individual separately). Correlation is calculated on the normalized 
log scale UMI count (see Online Methods). c, Heat maps showing clustering analysis of bone marrow plasma cells for subjects MM04 (top left; 429 
cells), MM09 (top right; 884 cells), SMM02 (bottom left; 1,645 cells) and MM11 (bottom right; 437 cells), clustered with the same number of randomly 
sampled normal bone marrow plasma cells from control individuals. Representative variable genes are shown. Gradient shows RNA expression, row 
normalized (min to max value in each row). d, Heat map showing sciCNAs for each subject, averaged by intrasubject clustering. e, sciCNA profile for 
SMM02 (top) and MM06 (bottom); each line represents a cluster-averaged CNA profile.
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levels. Although a relatively small study involving a few
hundred cells, most cells in the L1 group displayed a
relatively the lowest level of activations for genes involved
in oxidative phosphorylation and proteasome homeostasis
(Figs. 3a and 4a). L2 and L3 contained a majority of the

cells from patients with trisomies and cytogenetically
complexed MM (Table 1). L4 group is exclusive of cells
from patients with t(4;14). It is worth noting that pro-
teasome genes were some of the most prominently
expressed in L3 and L4 groups and their expression was
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Fig. 4 Differential expression genes and associated pathways with MM Progression. a Most significantly up-regulated (FC ≥ 2, p < 0.05) and
shared 311 genes when comparing each cell groups to L1. b Identification of 44 genes with most consistently altered in expression levels (FC ≥ 2, p <
0.05) between the adjacent groups and sample violin plots for 4 of 44 shared genes (red circle)
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Fig. 5 Survival analysis using 44 signature gene sets. Microarray gene expression data from APEX (a–c) was used and Kaplan–Meier (KM) survival
curve are shown based on the high and low expression status of the signature genes. p-values were generated using Mantel–Cox log-rank test. Bz.
Bortezomib; Dex. Dexamethasone, HR hazard ratio, Y-axis percentage of survival, X-axis days of survival from randomization
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Fig. 2 | Intratumor heterogeneity in myeloma. a, Shown are P!values to reject the null hypothesis (that a cell belongs to the control plasma cell group) for 
all 20,586 cells from 40 individuals, including those with multiple myeloma and controls. Dots represent individual plasma cells, classified as either normal 
(black) or abnormal (red; P!< !0.01, one sided t-test with Bonferroni correction; see Online Methods). Individuals with multiple myeloma are ordered 
according to average score value from low to high. b, Intratumor heterogeneity measure for 21 individuals with abnormal plasma cells (as classified by the 
score used in a). Shown are Pearson correlations within and between clusters (for each individual separately). Correlation is calculated on the normalized 
log scale UMI count (see Online Methods). c, Heat maps showing clustering analysis of bone marrow plasma cells for subjects MM04 (top left; 429 
cells), MM09 (top right; 884 cells), SMM02 (bottom left; 1,645 cells) and MM11 (bottom right; 437 cells), clustered with the same number of randomly 
sampled normal bone marrow plasma cells from control individuals. Representative variable genes are shown. Gradient shows RNA expression, row 
normalized (min to max value in each row). d, Heat map showing sciCNAs for each subject, averaged by intrasubject clustering. e, sciCNA profile for 
SMM02 (top) and MM06 (bottom); each line represents a cluster-averaged CNA profile.
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Conclusions

• Intra-tumor and inter-tumor heterogeneity is higher than anticipated
Ø Need for larger-scale studies and novel (single-cell) technologies to dissect 

heterogeneity
• Structural events more than gene mutations seem to drive evolution; however, genomic 

analyses still explain little of the transcriptional variability
Ø Need to integrate genomic studies with epigenetics, immune microenvironment etc

• Discrete steps of clinical evolution do not necessarily correlate with stages of genomic
evolution
Ø Opportunities to re-define risk of progression

• Is it time for clinical translation of these findings?
Ø Probably not yet, but results encourage further research

o Probability of SMM evolution
o Risk of NDMM
o Genomic correlates of drug response
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