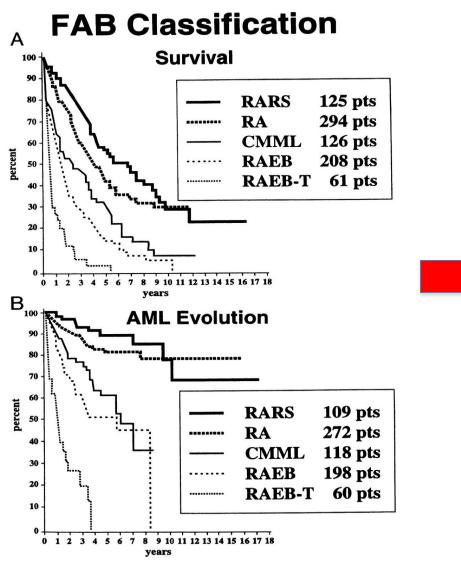
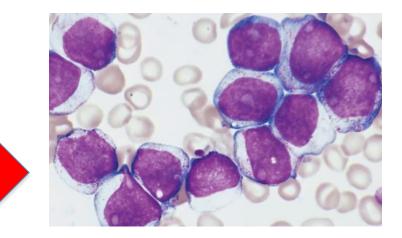
6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

LAM 20-30%


Cristina Papayannidis, MD, PhD DIMES, Istituto di Ematologia L. e A. Seràgnoli Università di Bologna

FAB CLASSIFICATION OF MYELODYSPLASTIC SYNDROME


Subtype	%	Blood Myeloblasts	Bone Marrow Myeloblasts	Average Survival	AML progression
RA	25%	<1%	<5%	32 months	15%
RARS	15%	<1%	<5%	76 months	5%
RAEB	35%	<5%	5%-20%	10 months	40%
RAEB-t	10%	5%-30%	20%-30%	5 months	50%
CMML	15%	<5%	<20%	22 months	35%

6 maggio 2016

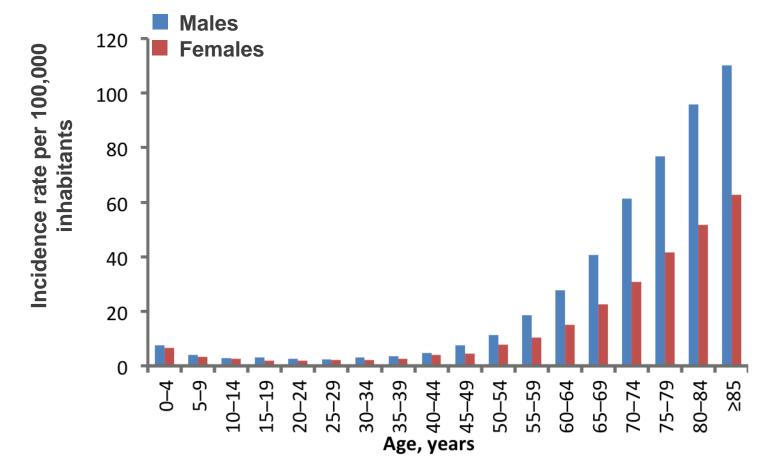
Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

WHO 2008 AML CLASSIFICATION

Bone marrow blast cells >20%

Peter Greenberg et al. Blood 1997;89:2079-2088

6 maggio 2016


Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

Acute myeloid leukaemia with recurrent genetic abnormalities AML with t(8;21)(q22;q22); <i>RUNX1-RUNX1T1</i> AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH</i> APL with t(15;17)(q22;q12); <i>PML-RARA</i> AML with t(9;11)(p22;q23); <i>MLLT3-MLL</i> AML with t(6;9)(p23;q34); <i>DEK-NUP214</i> AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); <i>RPN1-EVI1</i> AML (means problems) with t(1;22)(p13;p12); <i>RPN1-EVI1</i>	11	
AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1 Provisional entity: AML with mutated NPM1 Provisional entity: AML with mutated CEBPA Acute myeloid leukaemia with myelodysplasia-related changes Therapy-related myeloid neoplasms Acute myeloid leukaemia, not otherwise specified AML with minimal differentiation AML without maturation	CB 20-30% Secondary to previous M Multilineage dysplasia Specific MDS-related cyte	
AML with maturation Acute myelomonocytic leukaemia Acute monoblastic/monocytic leukaemia Acute erythroid leukaemias Pure erythroid leukaemia Erythroleukaemia, erythroid/myeloid Acute megakaryoblastic leukaemia Acute basophilic leukaemia Acute panmyelosis with myelofibrosis		
Myeloid sarcoma Myeloid proliferations related to Down syndrome Transient abnormal myelopoiesis Myeloid leukaemia associated with Down syndrome Blastic plasmacytoid dendritic cell neoplasms		

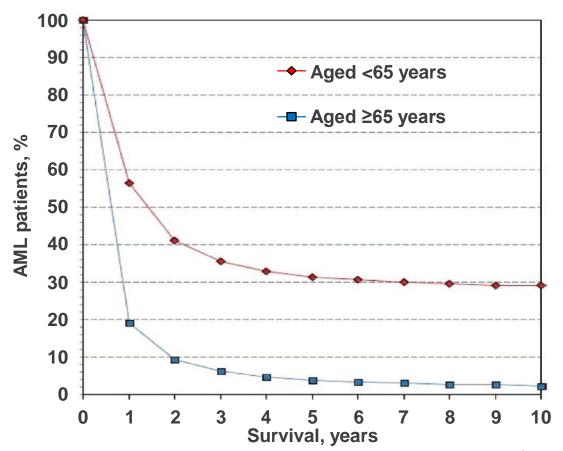
6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

INCIDENCE OF AML INCREASES WITH AGE

AML is predominantly a disease of older patients with a slight prevalence in males; the majority of cases occur in patients ≥65 years of age

1. Cancer Research UK. Leukaemia incidence statistics. Available at: http://www.cancerresearchuk.org/ cancerinfo/cancerstats/types/leukaemia/incidence/uk-leukaemia-incidence-statistics


Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

BOLOGNA

6 maggio 2016

Advanced age is a poor prognostic factor in patients with AML

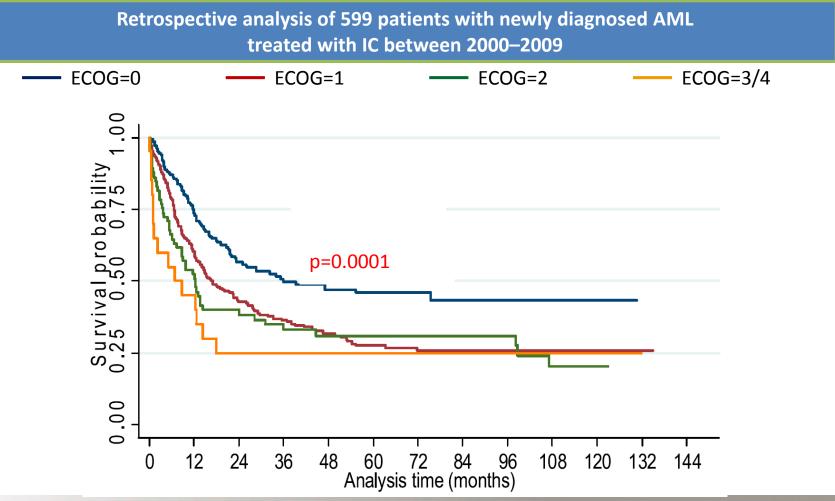
Age at diagnosis^{1,2}

1. Klepin HD, et al. Oncologist 2009;14:222–32

2. National Cancer Institute. SEER Cancer Statistics Review 1975–2005

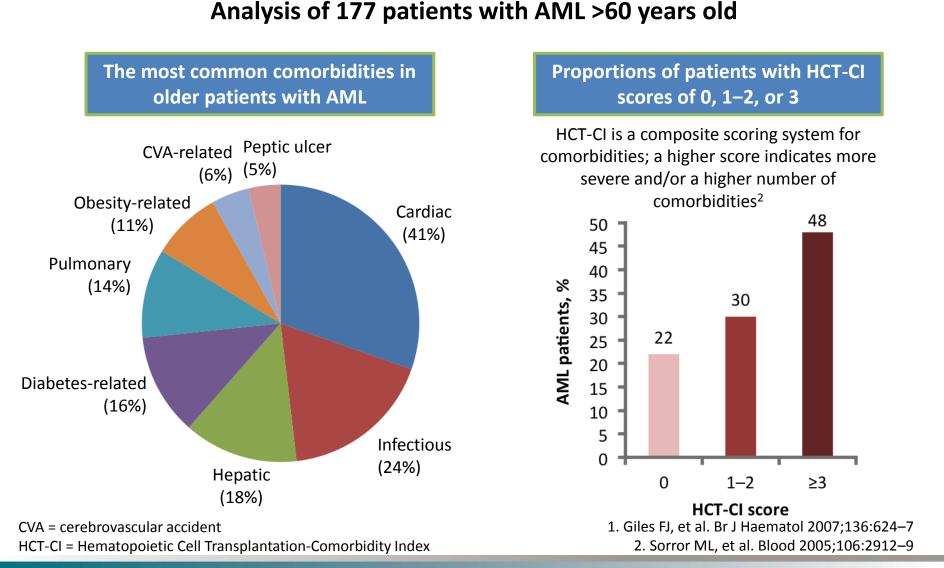
6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria


Age is associated with poor prognosis in patients with AML Presentation **Older** patients **Younger patients** Better performance scores Poorer performance scores Less comorbidities More comorbidities More likely to have More likely to have unfavourable cytogenetics favourable cytogenetics

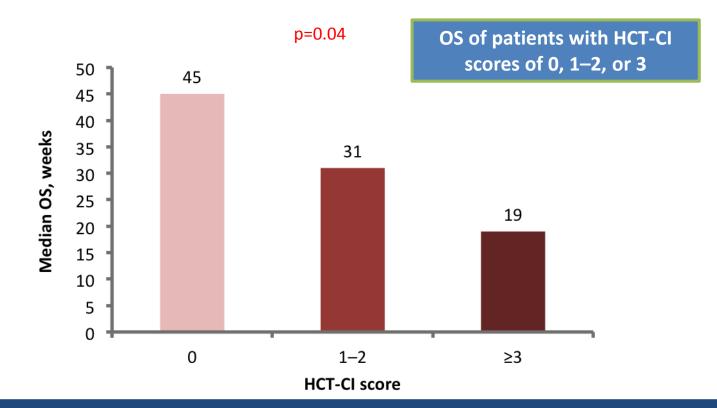
Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

BOLOGNA


6 maggio 2016

A high ECOG PS is a poor prognosis factor in patients with AML

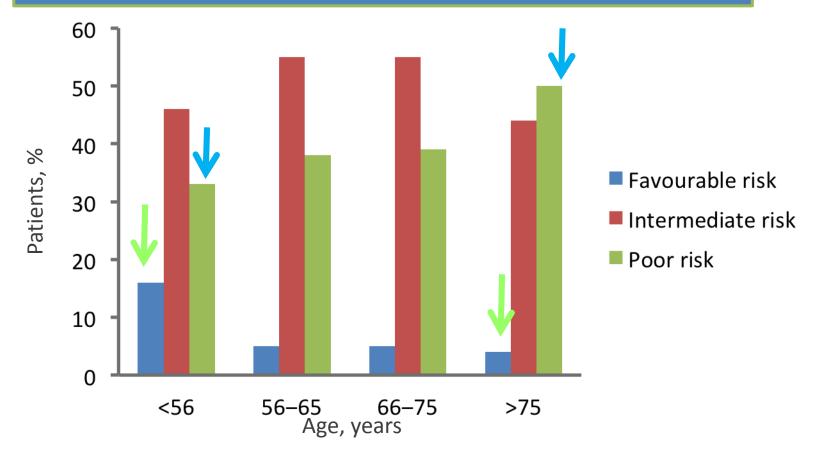
Bertoli S, et al. Blood 2013;121:2618–26


Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

A high comorbidity burden is a poor prognosis factor in patients with AML


HCT-CI score was predictive of OS in older patients with AML treated with IC

Giles FJ, et al. Br J Haematol 2007;136:624-7

6 maggio 2016

The incidence of poor risk cytogenetics increases with age

Retrospective analysis of 968 patients with AML¹

*The cytogenetic scoring system used was devised by the SWOG/ECOG Intergroup study, E3489/S9034²

BOLOGNA

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

Complex	Unbalanced	Balanced
kar yotype*	abnor malities	abnor malities
	-7 or del(7q)	t(11;16)(q23;p13.3) **
	-5 or del (5q)	t(3;21)(q26.2;q22.1) **
	i(17q) or t(17p)	t(1;3)(p36.3;q21.1)
	-13 or del(13q)	t(2;11)(p21;q23) **
	del(11q)	t(5;12)(q33;p12)
	del(12p) or t(12p)	t(5;7)(q33;q11.2)
	del(9q)	t(5;17)(q33;p13)
	idic(X)(q13)	t(5;10)(q33;q21)
		t(3;5)(q25;q34)

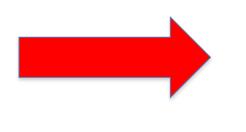
* Three or more unrelated abnormalities, none of which are included in the "AML with recurrent genetic abnormalities" subgroup; such cases should be categorized in the appropriate cytogenetic group.

** Abnormalities that most commonly occur in "therapy-related AML": the latter should be excluded before using such abnormalities as evidence for diagnosis of AML with myelodysplasia-related changes.

6 maggio 2016

Take home messages (I)

Age-specific assessment is required when evaluating therapies for AML


- Performance Status
- Comorbidities evaluation
- Cytogenetics and molecular biology assessment

.....which therapy? Which aim?

6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

Improvement of quality of life (and survival)

Disease eradication ???

- Conventional Chemotherapy
- Hypomethylating Agents (5 Azacitidine, Decitabine)
- Investigational Drugs

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

BOLOGNA

6 maggio 2016

Conventional Chemotherapy

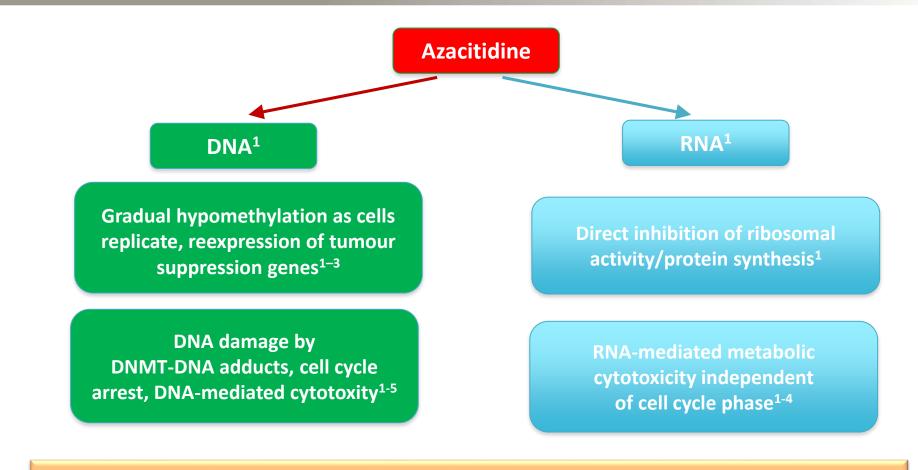
Study	Age (range)	N°	Induction and post-remission	CR	ED	OS	
HOVON- SAKK ³¹	67 (60-83)	813	INDUCTION ARAC 200 mg/m ² + DNR (45 mg/m ² vs. 90 mg/m ²) x 3 days ARAC 1g/m ² q 12 h x 6 days POSTREMISSION Allogeneic SCT or GO or no treatment	P=0.002 54% vs 64%	P = NS 12% vs 11%	30% (2-yrs)	
ALFA-9801 ³²	60 (50-70)	478	INDUCTION DNR 80 mg/m ² x 3d vs IDA 12 mg/m ² x3d vs IDA 12 mg/m ² x 4d +ARAc 200 mg/m ² x 7 days POSTREMISSION ARAc 1 g/m ² q 12 h x 4d + induction anthracycline x 2d	P = NS 70% vs 83% vs 78%	P = NS 8% vs 3% vs 6%	38% (2-yrs)	CR rate: 46-57%
ALFA-9803 ⁴²	72 (65-85)	429	INDUCTION DNR 45 mg/m ² x 4d or IDA 9 mg/m ² x 4d + ARAc 200 mg/m ² x 7 days POSTREMISSION ARAc 1 g/m2 q 12 h x 5d + induction anthracycline x1d for 6 months vs	57%	10%	27%	OS @ 2 years: <25%
AML HD98 ⁴³	65 (61-78)	329	ARAc 200 mg/m ² x 7d + anthracycline x 4d <i>INDUCTION</i> ICE 2 cycles +- ATRA <i>POSTREMISSION</i> HAM 1 cycle Random IEiv 1 cycle or 1-year oral maintenance therapy IEpo	46%	-	24% (4-yrs)	
AML14 ³³	67 (44-88)	1273	INDUCTION DAT x 2 courses +- PSC833 POSTREMISSION Random: MIDAC ± ICE	54%	18%	13% (5-yrs)	

Maurillo L et al, Med J of Hemat 2013

Clinical out	Clinical outcomes of patients with CK (≥3 abnormalities)						
Reference	Median age, years (range)	CR rate, %	Median OS, months	Early death* rate, %	Relapse rate, %		
Older patients							
Farag SS, et al. Blood 2006;108:63–73	68 (60–86)	25	-	25	90		
Fröhling S, et al. Blood 2006;108:3280–8	67 (61–84)	10	3.1	28	100		
Schoch C, et al. Br J Haematol 2001;112:118–26	68 (60–81)	44	8.0	18	90		
Van der Holt B, et al. Br J Haematol 2007;136:96–105	67 (60–78)	39	5.0	-	79		

BOLOGNA	BOI	_0	G١	NA
---------	-----	----	----	----

Azacitidine approved in EU


- Int-2-/High-risk MDS (IPSS)
- CMML with 10–29% bone marrow blasts without myeloproliferative disease
- World Health Organization-classified AML with 20–30% blasts and multilineage dysplasia
- not eligible for allogeneic stem cell transplantation

Standard dosing

- 75 mg/m²/day SC; 7 days of each 28-day treatment cycle
- minimum 6 cycles
- continue treatment as long as patient continues to benefit or until disease progression

6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

azacitidine not only acts on blasts when DNA replication is ongoing, but also during all other phases of the cell cycle

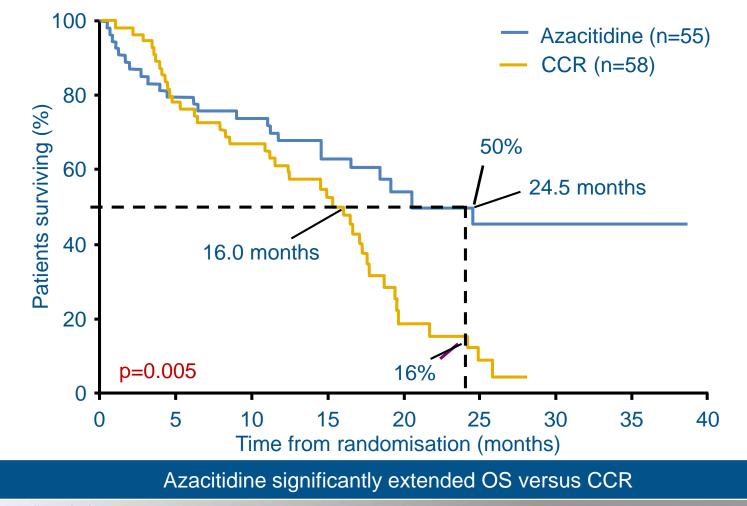
1. Hollenbach PW, et al. PLoS One 2010;5:1–10; 2. Schaefer M, et al. Cancer Res 2009;69:8127–32; 3. Santos FP, et al. Expert Rev Anticancer Ther 2010;10:9–22; 4. Paul TA, et al. Blood 2010;115:3098–108; 5. Kuo HK, et al. Cancer Res 2007;67:8248–54

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

5 Azacitidine: results

Study	Patients (n)	AML with 20-30% blasts (n)	Median Age (yrs)	ORR (%)	CR rate (%)	2-year OS (% of patients)	M edian sur vival (months)
Silverman 58,61	91	91	66	36	9	NA	19.3
Fenaux ⁶²	Aza 55 CCR 58	Aza 55 CCR 58	70 70	NA NA	18 15 (LDAC), 55 (IC)	50 16	24.5 16.0
Seymour ⁶⁴	Aza 38 CCR 49	Aza 12 CCR 18	78 77	58 39	NA NA	55 15	NR 10.8
Thepot ⁶⁵	138	44	73	21	14	18	10.2
Maurillo ⁶⁹	82	16	77	48	19	13	9

Maurillo L et al, Med J of Hemat 2013


6 maggio 2016

AZA-001: baseline demographics of patients with AML 20–30% blasts

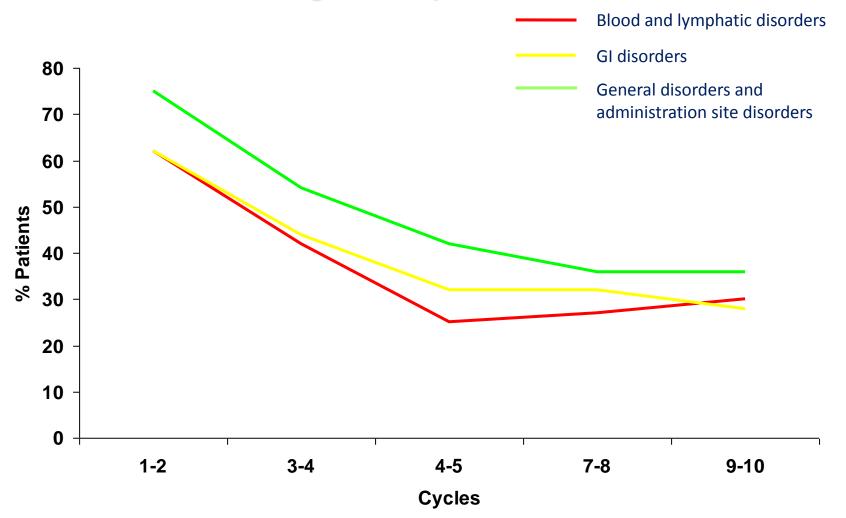
	Azacitidine (n=55)	CCR (n=58)
Median age, years (range)	70 (52–80)	70 (50–83)
ECOG status, %		
0	29.1	37.9
1	63.6	58.6
2	7.3	0
Cytogenetics, %		
Intermediate	69.1	74.1
Normal	34.5	56.9
unfavourable	25.5	22.4

CCR = conventional care regimens ECOG = Eastern Cooperative Oncology Group WHO = World Health Organization

AZA-001: OS in patients with AML 20–30% blasts

OS = overall survival

Fenaux P, et al. J Clin Oncol 2010;28:5


Management of AEs

AE	Suggested action	Suggested medication
Haematological ¹	MonitoringDelay of next cycleDose adjustment	 Prophylactic antibiotics Growth factor support Transfusions
Nausea, vomiting ²	• Prevent prior to azacitidine	Anti-emetics
Diarrhoea ²	• Symptomatically treat as it occurs	Anti-diarrhoeals
Constipation ²	 Symptomatically treat as it occurs 	Laxatives, stool softeners
Injection-site reactions ^{2,3}	 Check injection technique is appropriate Alleviate with medication 	 Antihistamines Corticosteroids Analgesics

1. Vidaza [package insert] 2. Demakos EP, Linebaugh JA. Clin J Oncol Nurs 2005;9:417–23 3. Almeida A, Pierdomenico F. Leuk Res 2012;36:e211–3

BOLOGNA

Occurrence of AEs generally decreases over time

Adapted from Santini V, et al. Poster presented at ASH 2008. Abstract 1653

6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

QUAZAR Trial in AML Maintenance CC-486-AML-001 Phase 3 Trial Schema^{1,2}

N = 460 planned

Transplantineligible AML

Within 90 days of first CR/CRi following induction ± consolidation CC-486 maintenance 300 mg QD × 14 days + Best supportive care

Placebo maintenance QD × 14 days + Best supportive care Relapse with <u>> 5%-15% BM blasts:</u> Dose-escalate to CC-486 300 mg or placebo QD × 21 days

Relapse with <u>≥ 16% BM blasts:</u> Discontinue treatment

6 maggio 2016

Take home messages (II)

- The choice of therapeutic approach in AML elderly patients requires a multidisciplinary evaluation
- Adverse cytogenetics induces a low rate of response to standard chemotherapy
- 5 Azacitidine is well tolerated and has a crucial role in the treatment of 20-30% AML patients
- The identification of new genetic alterations in AML patients will lead to the development of innovative compounds with more "targeted" mechanisms of action

6 maggio 2016

Slow Medicine in Ematologia: le Patologie Mieloidi in Geriatria

Thank you!

