Highlights in Ematologia Treviso, 17-18 Novembre 2017

Emoglobinopatie frequenti e meno frequenti

Elena Cassinerio

Centro Malattie Rare Fondazione IRCCS Cà Granda Ospedale Maggiore Milano

Conflitto d'interesse

Nessun conflitto d'interesse

Agenda

Definition of hemoglobinopathies

Case reports

Pathophysiology

Clinical spectrum

Hemoglobinopathies

Donna, 52 anni

- Proveniente dalle Filippine
- Padre di 88 anni affetto da artrite reumatoide
- Madre deceduta a 88 anni per ictus, con anemia
- Fratello di 57 anni, in buona salute, iperteso

Donna, 52 anni

In APR:

- All' età di 15 anni: tonsillectomia ed adenoidectomia
- All' età di 19 anni: ricovero per febbre ed ittero con diagnosi di anemia emolitica
- Riferisce valori di Hb stabili tra 8 e 9 g/dl; segnalata splenomegalia e iperferritinemia

Donna, 52 anni

Ricorso in PS per febbre ed Hb 6.7 g/dl.

Esami Ematici

> LDH 595 U/I

- GB normali
- ≻ Hb 6.7 g/dl
- > MCV 68.7 fl
- > PLT normali
- > RDW 34.9%

- Ferritina 1171 ng/ml, Sat transf: 62%
- > Bil. tot/dir: 1,23/0,41 mg/dl

Due fratelli D.M. ed F.M. di 40 e 32 anni

- Provenienti dal Bangladesh
- Madre diabetica, zio paterno e padre con pregresso IMA.

D.M. 40 anni

Facies talassemica Ipogonadismo Splenomegalia Iperferritinemia Calcolosi colecisti Cardiopatia (FE 45%) Non chelazione ET regolari*

Genova 2006 Arrivo in Italia

F.M. 32 anni

Facies composita Normale fx gonadica Splenomegalia Iperferritinemia Colecisti alitiasica FE nella norma Non chelazione ET regolari*

*dall' età di 8-9 anni

D.M. 40 anni

Ipogonadismo Splenectomia Iperferritinemia Colecistectomia Cardiopatia dilatativa Aritmie (FA) Chelazione

"Percorso" negli anni

Nascita di un figlio Splenomegalia Iperferritinemia Colecisti alitiasica FE nella norma Non aritmie Chelazione

F.M. 32 anni

D.M. 40 anni F.M. 32 anni **Genetica: Genetica: HbE/Beta-thal HbE/Beta-thal**

Hemoglobinopathies in the world

A different distribution of hemoglobinopathies is detected in each country

Approx. 19,000 annual births⁴

The increased migration flow expands the reach of these diseases

1Weatherall DJ. Blood Rev 2012;26 Suppl 1:S3-S6;

²Available from: http://emedicine.medscape.com/article/959122-overview#a0156;

³Harteveld CL and Higgs DR. Orphanet J Rare Dis 2010;5:13; ⁴Weatherall DJ. Blood 2010;115:4331-4336.

Pathophysiology

"Points" of pathophysiology:

- Ineffective erythropoiesis
 - Anemia
 - Iron overload

Thalassemia has a broad clinical spectrum, complicating diagnosis and management

NTDT

Hb Barts hydrops (α thalassemia major)

β thalassemia minor

Taher AT et al. Br J Haematol 2011;152:512–523; 2 Galanello R and Origa R. Orphanet Journal of Rare Diseases 2010;5:11; 3. Vichinsky E. Hematology Am Soc Hematol Educ Program 2007;79-83; 4. Muncie HL and Campbell JS. Am Fam Physician 2009;80:339-344; 5. Figure adapted from Musallam KM et al. Haematologica 2013;98:833-844.

Thalassemia has a broad clinical spectrum, complicating diagnosis and management

Phenotypic classification of the β thalassemias is based on clinical grounds

Musallam KM et al. Cold Spring Harb Perspect Med 2012;2:a013482;
 Galanello R and Origa R. Orphanet J Rare Dis 2010;5:11;
 Taher AT et al. Blood Reviews 2012;26S:S24–S27

Genotype-phenotype association in α thalassemia leads to variable clinical severity

 Overall clinical phenotype: very mild – may not be noticed other than when a blood count is examined¹

Phenotype	Genotype	Clinical severity	
Major (Hb Barts hydrops)	•/	 Most develop hydrops fetalis syndrome and die in utero during pregnancy, or shortly after birth Survivors are transfusion dependent 	
Non-deletional Hb H disease	 /α^Tα 	 Moderate-to-severe anemia May require occasional or frequent transfusions (10– 12/year)^{2,3} 	
Deletional Hb H disease	•/-α	 Mild-to-moderate anemia Transfusion independent Clinical severity is variable and ranges between minor to major 	
Trait/minor	 -α/-α /αα 	Borderline asymptomatic anemiaMicrocytosis and hypochromia	
Silent carrier	• -α/αα	AsymptomaticNo hematological abnormalities	

NTDT

Hb H disease is the most severe non-fatal form of α thalassemia²

Adapted from Musallam KM *et al. Haematologica* 2013;98:833–844.
 Harteveld C and Higgs D. *Orphanet Journal of Rare Diseases* 2010;5:13;
 Fucharoen S and Viprakasit V. *Hematology Am Soc Hematol Educ Program* 2009:26–34;

4. Laosombat V et al. Ann Hem 2009;88:1185–1192

disease

0

Hb E/β thalassemia is associated with a highly variable clinical phenotype, with mild-to-moderate disease being classified as NTDT

Г	Hb E/β thalassemia category	Clinical phenotype
TDT -		Hb level as low as 4–5 g/dL
	Severe	Clinical symptoms similar to β thalassemia major
NTDT -	Moderate	Hb levels between 6 and 7 g/dL
		 Clinical symptoms similar to β thalassemia intermedia
	Mild	Hb levels between 9 and 12 g/dL
		Usually do not develop clinically significant problems

Distinct genetic modifiers can contribute to the phenotypic diversity of Hb E/β thalassemia

• Type of β thalassemia mutations

- Hb E with β⁺ thalassemia mutations are likely to have a mild disease phenotype
- Co-inheritance of α thalassemia
 - $-\alpha$ thalassemia mutations can reduce free α globin precipitation

Co-inheritance of determinants that increase Hb F

- Up-regulated γ globin expression will further normalize globin imbalance due to Hb E/β thalassemia
- Hb E/HPFH has a very mild clinical phenotype
- Modifiers of complications:
 - QTL with increased F on chromosome 6q23, 8q, Xp22 and 2p16.1
 - XMN1 polymorphism/ SNPs within the β gene cluster (chromosome 11p15)
 - Polymorphism of the UGT1*1 gene
 - Serum erythropoietin concentration

1. Galanello R. *Blood Rev* 2012;26S:S7–S11;

- 2. Olivieri NF et al. Br J Haematol 2008;141:388-397;
- 3. Winichagoon P et al. Br J Haematol 1993;83:633-639;
- 4. Premawardhena A et al. Lancet 2001;357:1945-1946;

5. Olivieri NF et al. Hematol Oncol Clin North Am 2010;24:1055-1070;

QTL, quantitative trait loci; SNP, single nucleotide polymorphisms

6. O'Donnell A et al. Proc Natl Acad Sci USA 2009;106:18716-18721

Clinical complications in TDT and NTDT

TDT, transfusion-dependent thalassemia

Musallam KM et al. Haematologica 2013;98:833-844.

The increased migration flows in our country lead to a particular attention for hemoglobinopathies and their diagnosis

Hemoglobinopathies, previously letal from childhood, can be treated as chronic conditions

Predominant forms of hemoglobinopathies are:

- β thalassemia major (TDT)
- Sickle cell disease
- β thalassemia intermedia (NTDT)
- Hb E/ β thalassemia
- Hb H disease (α thalassemia)

NTDT leads to ineffective erythropoiesis and anemia, which can ultimately lead to several complications including iron overload

Underlying molecular pathology and a variety of **genetic modifiers** lead to a variable clinical phenotype for all NTDTs

The broad clinical spectrum of NTDT complicates diagnosis and management, requiring a **personalized approach** to patient treatment

Correction of globin chains imbalance (gene teraphy), amelioration of ineffective erythropoiesis (sotatercept, luspatercept, JAK2 inhibitors) and regulation of iron overload (chelators, drugs for iron metabolism) represent the **future treatment strategies**

Ringraziamenti

A tutto il personale del Centro Malattie Rare

Prof. M.Domenica Cappellini Dott.ssa Giovanna Graziadei Dott.ssa Alessia Marcon Dott.ssa Irene Motta Dott.ssa Migone De Amicis Margherita Personale infermieristico

PER L'ATTENZIONE

