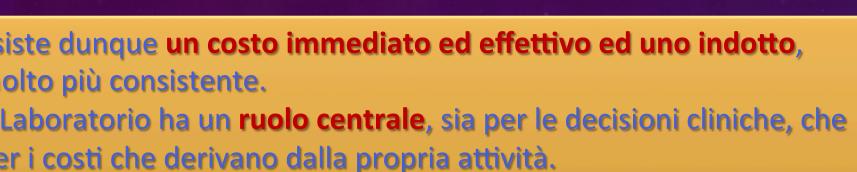
DICHIARO CHE NEGLI ULTIMI DUE ANNI HO AVUTO RAPPORTI SCIENTIFICI E DI FINANZIAMENTO CON IL SEGUENTE SOGGETTO PORTATORE DI INTERESSI COMMERCIALI IN CAMPO SANITARIO: SEBIA.

A SUPPORTO DELLE DECISION CLINICHE NELL EMOGLOBINOPATI

Highlights in Ematologic

TREVISO, 17/11/20

Dr.ssa G. Barberio
UOC Medicina di Laboratorio
Ospedale di Treviso
Az. Ulss 2 «Marca Trevigiana»


ALCUNI DATI:

- I dati di laboratorio costituiscono l'80% dei record clinici influenzanti lo sviluppo di decisioni critiche per il paziente
- Il Laboratorio rappresenta meno del 4% dei costi di un Sistema di Salute Pubblica
- Influenza tuttavia il 95% dei rimanenti costi

M.J. Hallworth, «The 70% claim: what is the evidence base?», Annals of Clinical Biochemistry, 2011; 48 487-488

G. Lippi e M. Plebani, «Laboratory medicine does matter in science (and medicine)...yet many s to ignore it»

Clin Chem Lab Med 2015

e consegue che la sua produttività non è data dal numero di estazioni eseguite, ma dalla quantità di informazioni clinicamente fili prodotte.

Quindi la produttività del Laboratorio è la misura del contributo del Laboratorio stesso agli esiti clinici.

LCUNI DATI INERENTI I DIFETTI ELL'EMOGLOBINA

- Sono le alterazioni genetiche più diffuse al mondo: si stima che oltre il 7% della popolazione mondiale sia affetto da un'alterazione dei geni globinici.
- Fortunatamente la maggior parte sono difetti «innocenti».
- In forma eterozigote non danno problemi importanti.
- In omozigosi spesso sono clinicamente rilevanti.
- Le associazioni fra difetti (composti emoglobinici) sono frequenti e su questi bisogna porre attenzione.
- E' un problema in incremento continuo, in parte dovuto alla minore mortalità infantile da cause nutrizionali ed infettive ed in parte al fenomeno dei flussi migratori, ma anche alla maggiore attenzione verso queste condizioni. Dunque sussiste un maggior ricorso a test di Laboratorio per evidenziare tali difetti.

Da HbVar: Database dei difetti talassemici e delle Varianti dell'Emoglobin

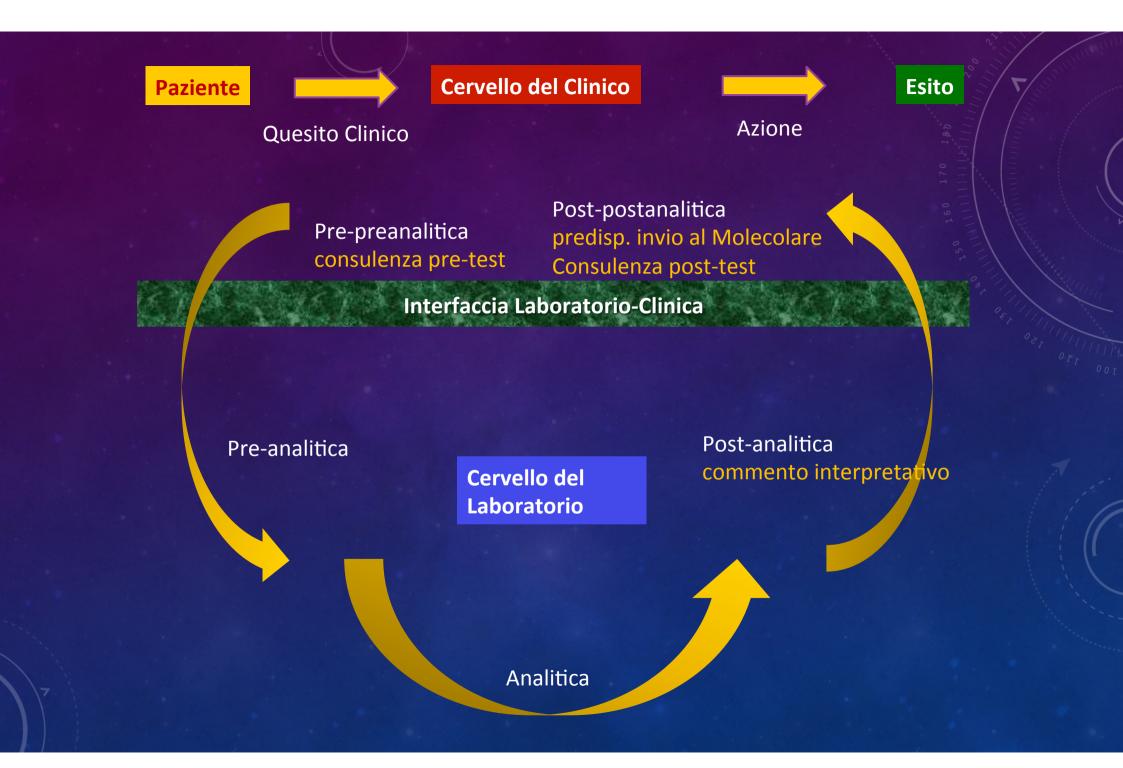
tp://globin.bx.psu.edu/hbvar/menu.html

Query	Count of results
Total entries in database	1352
Total hemoglobin variant entries	1009
Total thalassemia entries	393
Total entries in both variant and thalassemia categories	50
Entries involving the alpha1 gene	279
Entries involving the alpha2 gene	324
Entries involving the beta gene	737
Entries involving the delta gene	81
Entries involving the Agamma gene	50
Entries involving the Ggamma gene	59
Entries with an insertion mutation	54
Entries with a fusion gene mutation	8
Entries with a deletion mutation	161
Entries with a substitution mutation	1104
Hemoglobins with high oxygen affinity	91
Unstable hemoglobins	135
Methemoglobins	9

Situazione all' 1.12.2009

Aggiornamento al 25.10.2017

Query	Count of resul
Total entries in database	1749
Total hemoglobin variant entries	1294
Total thalassemia entries	493
Total entries in both variant and thalassemia categories	50
Entries involving the alpha1 gene	352
Entries involving the alpha2 gene	437
Entries involving the beta gene	904
Entries involving the delta gene	124
Entries involving the Agamma gene	61
Entries involving the Ggamma gene	75
Entries with an insertion mutation	81
Entries with a fusion gene mutation	10
Entries with a deletion mutation	225
Entries with a substitution mutation	1415
Hemoglobins with high oxygen affinity	100
Hemoglobins with low oxygen affinity	49
Unstable hemoglobins	151
Methemoglobins	10


ALLARGARE IL CONCETTO DI «ZONA A RISCHIO»

Le ultime statistiche riportano un'incidenza aumentata di anemia falciforme nei nuovi nati in zone non classicamente interessate da Hbpatie.

MOMENTI DI MASSIMA INTERAZIONE FRA CLINICA E LABORATORIO

- Sono due i momenti in particolare caratterizzati dal confronto e dalla reciproca messa a disposizione del know-how sulla materia:
 - La fase pre-analitica
 - La fase post-analitica

MOTIVI DELLA RICHIESTA DI UN ASSETTO EMOGLOBINICO

Richieste motivate da quesiti clinici specifici:

- Microcitosi
- Anemie emolitiche
- Familiarità per Emoglobinopatie
- Valutazione dell'Hb fetale in vari ambiti
- Valutazione di HbS dopo trattamento
- Valutazione del quadro Hb dopo trasfusione
- Altro...

Richieste motivate da protocolli definiti:

- Linee Guida della gravidanza
- Procolli per PMA
- Screening di popolazioni selezionate
- Bancaggio di cellule staminali

Tutto ciò fa sì che...

…il clinico possa essere, di volta in volta: internista, ematologo, ginecologo, neonatologo, trasfusionista, pediatra, medico di trasfusionista, pediatra, medico di medicina generale, etc...

TORI CHE RENDONO PIÙ COMPLESSO IL ORO IN LABORATORIO

Accorpamento di Ospedali e/o di Servizi

Riduzione delle risorse disponibili

neccepibilità qualitativa dei referti

Esigenze di TATs sempre più brevi

Nuova

organizzazione

Limitazione della spesa sanitaria

QUALI INFORMAZIONI DAL LABORATORIO AL CLINICO

- Significato del test
- Soggetti su cui effettuiamo il test
- Limiti del test (superabili e non superabili)
- Motivi che impongono il differimento nel tempo del test
- Come va eseguito l'assetto emoglobinico

SIGNIFICATO DEL TEST

- quello di I livello è un test biochimico, che mette in evidenza gli effetti della variazione genetica, non la causa della variazione stessa;
- gli stessi effetti possono essere dovuti a cause diverse o a una sommatoria di cause.

ignificato del test

L'assetto Hb è da considerarsi, a tutti gli effetti, un test genetico;

European Journal of Human Genetics (2015) 23, 426–437 © 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15

www.nature.com/ejhg

POLICY

EMQN Best Practice Guidelines for molecular and haematology methods for carrier identification and prenatal diagnosis of the haemoglobinopathies

Joanne Traeger-Synodinos*,1, Cornelis L Harteveld², John M Old³, Mary Petrou⁴, Renzo Galanello⁵, Piero Giordano², Michael Angastioniotis⁶, Barbara De la Salle⁵, Shirley Henderson³ and Alison May⁵ on behalf of contributors to the EMQN haemoglobinopathies best practice meeting

Haemoglobinopathies constitute the commonest recessive monogenic disorders worldwide, and the treatment of affected individuals presents a substantial global disease burden. Carrier identification and prenatal diagnosis represent valuable procedures that identify couples at risk for having affected children, so that they can be offered options to have healthy offering. Molecular diagnosis facilitates prenatal diagnosis and definitive diagnosis of carriers and nationals (especially 'atypical' cases who often have complex genotype interactions). However, the haemoglobin disorders are unique among all genetic diseases in that identification of carriers is preferable by haematological (biochemical) tests rather than DNA analysis. These Best Practice guidelines offer an overview of recommended strategies and methods for carrier identification and prenatal diagnosis of haemoglobinopathies, and emphasize the importance of appropriately applying and interpreting haematological tests in supporting the optimum application and evaluation of globin gene DNA analysis.

European Journal of Human Genetics (2015) 23, 426–437; doi:10.1038/eihg.2014.131; published online 23 July 2014

However, the haemoglobin disorders are unique among all genetic disease in that identification of carriers is preferable by haematological (biochemical) tests rather than DNA analysis.

SOGGETTI SU CUI EFFETTUIAMO IL TEST

- Tre sono le situazioni:
 - neonato
 - profilassi
 - prevenzione effetti futuri
 - spiegare effetti attuali
 - screening universali o mirati
 - indagare situazioni non diagnosticate precedentemente
 - adulto
 - varie condizioni
 - gravidanza
 - prevenzione

LIMITI DEL TEST

- Non è possibile la diagnosi certa in molte situazioni:
 - alfa-thal
 - alcuni doppi difetti
 - moltissime varianti
 - situazioni borderline
 - situazioni in divenire (primo anno di vita)

MOTIVI CHE IMPONGONO IL DIFFERIMENTO NEL TEMPO DEL TEST

- Trasfusioni recenti
- Iposideremia
- Terapie con anti-retrovirali.

COME VA FATTO L'ASSETTO EMOGLOBINCO

- Con gli strumenti più all'avanguardia
 - Elettroforesi Capillare
 - HPLC

Perché contemporaneamente pesano, separano e distinguono con un C.V. < 4%

- Abbandono di tecniche obsolete:
 - Elettroforesi acida-alcalina
 - Isoelettrofocusing
 - Colonnine

C.V. =20%

Su campione di sangue intero in EDTA, entro 2 o 3 gg dal prelievo.

Informazioni pre-test

2.5 Informazioni da fornire al paziente sul ruolo e i limiti degli esami di 1º livello

È opportuno che oqni laboratorio disponga di una propria "carta dei servizi" per una corretta informazione sulle modalità di accesso agli esami; per le emoglobinopatie è buona norma che il laboratorio fornisca al momento dell'accesso agli esami una "specifica informativa", considerando anche la crescente multietnicità, sul significato del test genetico per le emoglobinopatie, sui meccanismi di trasmissione di tali difetti, sugli aspetti della prevenzione nonché sui limiti degli esami di 1° livello. Il paziente deve essere informato sulla possibilità che i test producano un referto non conclusivo; in questi casi ulteriori indagini potranno essere necessarie e richieste al laboratorio di riferimento mediante l'invio di campioni di sangue o del paziente stesso.

Da: «Raccomandazioni per la diagnostica di I livello delle emoglobinopatie» SITE, 2012

2.6 Notizie utili sul paziente

Il momento analitico che è proprio del laboratorio non può prescindere da una opportuna ed appropriata conoscenza del contesto nel quale è stato formulato il quesito diagnostico dal medico curante e di alcune notizie sul paziente che possono condizionare l'esito stesso degli esami.

Pur sapendo che la raccolta di una "anamnesi personale essenziale" puo rappresentare un impegno troppo gravoso per i ritmi e le consuetudini di molti laboratori, queste raccomandazioni vogliono comunque stimolare decisioni ed azioni per contribuire a far pervenire al laboratorio notizie cliniche "di minima" per il raggiungimento di corrette conclusioni diagnostiche.

NOTIZIE CHE LA CLINICA DEVE FORNIRE AL LABORATORIO

Adulto

Neonato

- Età e sesso
- origine ed etnia
- stato ed epoca della gravidanza
- notizie su esami già eseguiti da familiari e/o dal partner
- trasfusioni negli ultimi 3 mesi
- altre patologie note
- terapie in atto

- Età gestazionale e sesso
- origine ed etnia
- familiarità per Hbpatie
- gemellarità
- ittero neonatale

E' importante, oltre a ciò, conoscere anche il quesito clinico che indirizzerà il Laboratorio anche sulla tempistica della risposta.

Da: «Raccomandazioni per la diagnostica di I livello delle emoglobinopatie»

SITE, 2012

Tabella 2-2

La prescrizione del Clinico per le indagini di base sui difetti dell'emoglobina.

La definizione dello stato di soggetto « affetto » o di soggetto « portatore » di una variazione dell'emoglobina necessariamente deve prevedere, come primo momento diagnostico, test biochimici di base che eventualmente potranno solo successivamente essere integrati da test molecolari. Pertanto qualunque sia il contesto nel quale viene richiesta una diagnosi di emoglobinopatia, con la seguente lindicazione:

« Esami specifici di 1° livello per Emoglobinopatie » si devono intendere prescritti i seguenti esami:

- Determinazione quali-quantitativa delle frazioni emoglobiniche, altrimenti detto « assetto emoglobinico »
- Esame emocromocitometrico
- Esami per la valutazione dello stato marziale

In alternativa si possono riportare i codici del Tariffario Nazionale relativi ai suddetti esami o altri codici se previsti da specifiche norme regionali.

- 90.66.3

- 90.66.4

- 90.66.5

Assetto Hb qualiquantitativo - 90.22.5

- 90.42.5

Assetto marziale

- 90.62.2

Emocromo

Bilancio marziale

Indici eritrocitari

Al centro della diagnostica di primo livello delle Emoglobinopatie, vi è la separazione quali-quantitativa delle varie frazioni emoglobiniche.

Notizie Pre-test

Quesito Clinico

oinvolgimento (nel senso di diminuizione o aumento) della HBA 2

Tipo di talassemia	Tipo di catena interessata	Tipo di emoglobina interessata
Alfa: α° o α⁺	α	A, A_2, F
Beta: β° o β⁺	β	A, A_2
Gamma: γ	γ	F
Delta: δ° o δ⁺	δ	(A_2)
DeltaBeta: δβ° o δβ⁺	δεβ	A, A_2, F

Sia in caso aumento, che di diminuzione delle varie catene, c'è una sorta di supremazia espressiva della A₂.

Anche in caso di variante beta o alfa il suo valore ne è influenzato

RACCOMANDAZIONI PER LA DIAGNOSTICA DI PRIMO LIVELLO DELLE EMOGLOBINOPATIE

della Società Italiana Talassemie ed Emoglobinopatie - SITE

> a cura di G. IVALDI e G. BARBERIO

> > V.N HbA₂ 2,5 - 3,2

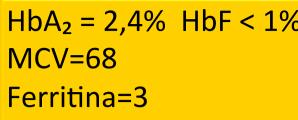
Tabella 3-5

Espressione dell'Hb A_2 in relazione ad alcuni più frequenti difetti dei geni α , β , δ e γ allo stato eteroziqote e ad altre condizioni non genetiche: confronto di alcuni significativi parametri

Hb A ₂	Hb F	MCV	MCH	Difetto	Difetto	Difetto	Difetto	F
% −	%	fl	pg	gene α	gene β	gene ð	gene y	
				_			(promoter)	
1.2 - 2.2	< 1.0	> 78	> 26	NO	NO	δ° - δ+	NO	Ta
1.2 - 1.8	< 1.0	≥80	> 27	NO	NO	δ×	NO	Delt
1.2 - 2.3	< 1.0	< 67	< 26	α-/	NO	NO	NO	
1.5 - 2.5	< 1.0	< 80	< 26	NO	NO	NO	NO	
1.5 - 2.8	3.0 - 18.0	< 75	< 26	NO	β ^{del}	δdel	NO	De
1.9 - 3.1	< 1.0	< 75	< 26	αα/ (α°)	NO	NO	NO	1
				α-/α- (α*omo)				Ļ.,
2.1 - 3.2	< 1.0	> 76	> 26	α-/αα (α*)	NO	NO	NO	1
< 2.8	> 12.0	< 75	< 26	NO	β°	NO	-196 A _v	De Ta
< 2.8	2.0 - 10.0	< 75	< 26	NO	ibrido δ-β	ibrido δ-β	NO	Ht
< 3.1	< 2.0	< 75	< 26	NO	β° ο β+	δ°, δ+, δ [×]	NO	δ
2.2 - 3.2	1.0 - 25.0	> 79	> 27	NO	NO	NO	Vari	Va
2.5 - 3.2	< 1.0	≥ 79	> 27	NO	NO	NO	NO	N
2.8 - 3.5	< 1.5	> 78	> 25	ααα	NO	NO	NO	G
2.9 - 3.7	< 1.0	75 - 82	< 28	NO	β++	NO	NO	В
3.0 - 3.7	< 1.0	> 80	> 28	NO	NO	NO	NO	Ιp
3.0 - 4.2	< 1.0	> 88	> 28	NO	NO	NO	NO	
3.5 - 5.0	< 1.0	68 - 78	< 27	α+ο α°	β° ο β+	NO	NO	α
3.6 - 5.5	< 1.5	65 - 78	20 – 27	NO	β+	NO	NO	В
4.1 - 6.5	< 1.5	60 - 72	18 – 26	ЙO	ß°	NO	NO	В

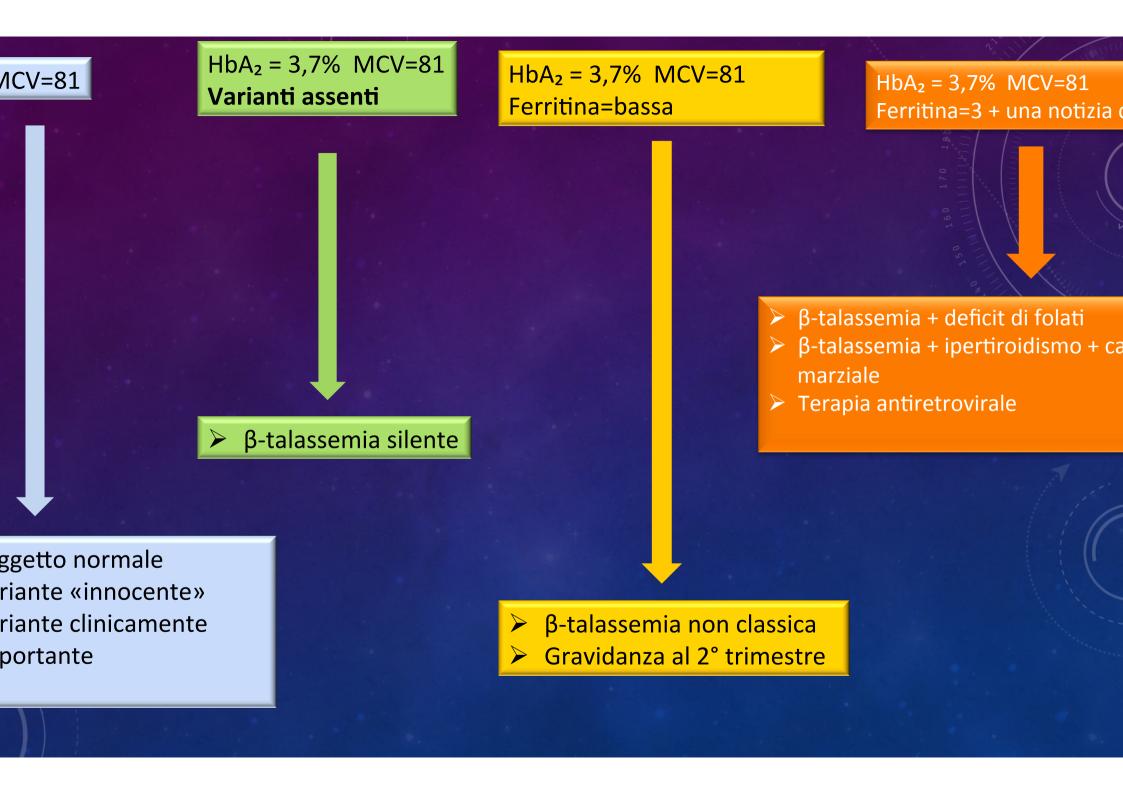
l valori e gli intervalli riportati in tabella sono ricavati dall'ampia letteratura sull'argomento e dalle lineeguida internazionali. (9-10)

E non solo.


$HbA_2 = 2,4\% \ HbF < 1\%$

Soggetto normale

HbA₂ = 2,4% HbF < 1% MCV=68



- > α-talassemia
- δ+β-talassemia

- > δ+ β-talassemia + sideropenia
- β-talassemia occultata dalla sideropenia

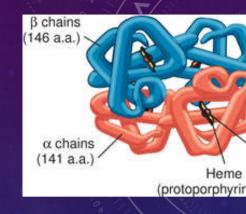
 $HbA_2 = 2,4\% HbF < 1\%$

MCV=68

Ferritina=3

Donna gravida (settimane ?) con partner con β-talassemia eterozigote

Quale strada intraprendere?


- Ripetere dopo correzione del bilancio marziale
- Invio del campione per esame molecolare
- Invio veloce per diagnosi prenatale

Examples of amino acid substitutions found in (a) the 141-amino acid long α -globin polypeptide and (b) the 146-amino acid β -globin polypeptide of various human hemoglobin variants.

a) α-chain	Amino acid position						
	1	2	16	30	57	68	141
Normal	Val	Leu	Lys	Glu	Gly	Asn	Arg
Hb variants:							
HbI	Val	Leu	Asp	Glu	Gly	Asn	Arg
Hb-G Honolulu	Val	Leu	Lys	GIn	Gly	Asn	Arg
Hb Norfolk	Val	Leu	Lys	Glu	Asp	Asn	Arg
Hb-G Philadelphia	Val	Leu	Lys	Glu	Gly	Lys	Arg
Hb-G Philadelphia	vai	Leu	Lys	GIU	Gly	Lys	Arg

b) β-chain	Amino acid position						
	1	2	6	26	63	121	146
Normal	Val	His	Glu	Glu	His	Glu	His
Hb variants:							
Hb-S	Val	His	Val	Glu	His	Glu	His
Hb-C	Val	His	Lys	Glu	His	Glu	His
Hb-E	Val	His	Glu	Lys	His	Glu	His
Hb-M Saskatoon	Val	His	Glu	Glu	Tyr	Glu	His
Hb Zurich	Val	His	Glu	Glu	Arg	Glu	His
Hb-D β Punjab	Val	His	Glu	Glu	His	Gin	His

Le varianti emoglobiniche

LE VARIANTI EMOGLOBINICHE

- Sono dovute a mutazioni puntiformi degli esoni, che comportano (nella maggior parte dei casi) la sostituzione di un aminoacido, da cui consegue la formazione di una catena emoglobinica diversa.
- Quelle descritte fino ad oggi appartengono prevalentemente alle catene β (oltre 500) e alle catene α (oltre 350).

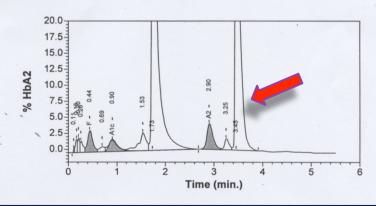
EPIFENOMENOLOGIA DELLE VARIANTI EMOGLOBINICHE

- Nessun epifenomeno;
- Falcizzazione;
- Cristallizzazione;
- Instabilità;
- Alterata affinità per l'O₂;
- Formazione di MetaHb.

HB S

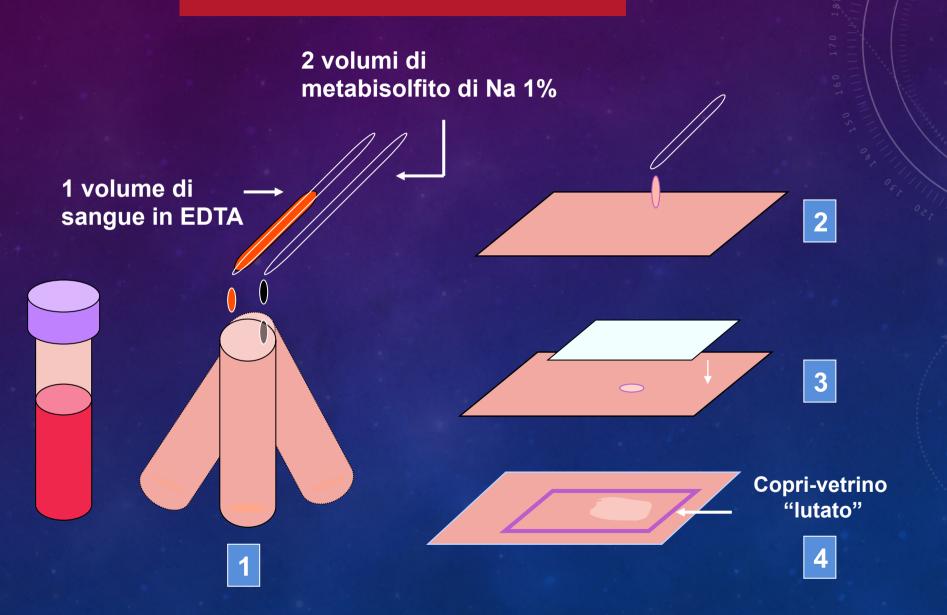
HPLC

Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area
Unknown		0.1	0.109	2800
Unknown		0.6	0.163	13303
A1a		0.7	0.204	14551
A1b		0.8	0.256	16643
F	2.7*		0.437	58122
Unknown		0.7	0.694	14612
A1c	5.9		0.900	49968
P3		3.3	1.529	72065
Ao		49.5	1.734	1075388
A2	4.0*		2.897	82288
Unknown		1.2	3.247	26363
S		34.4	3.452	747697

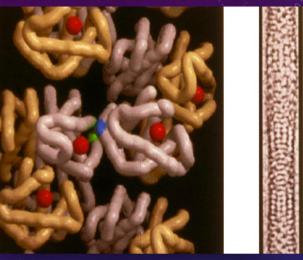

*Values outside of expected ranges

2,173,800

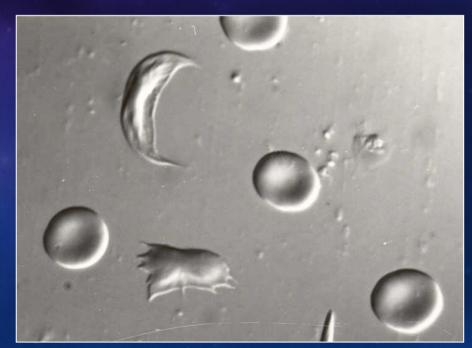
F Concentration =
A1c Concentration =
A2 Concentration =

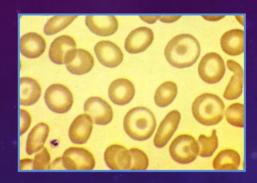

2.7* % 5.9 % 4.0* %

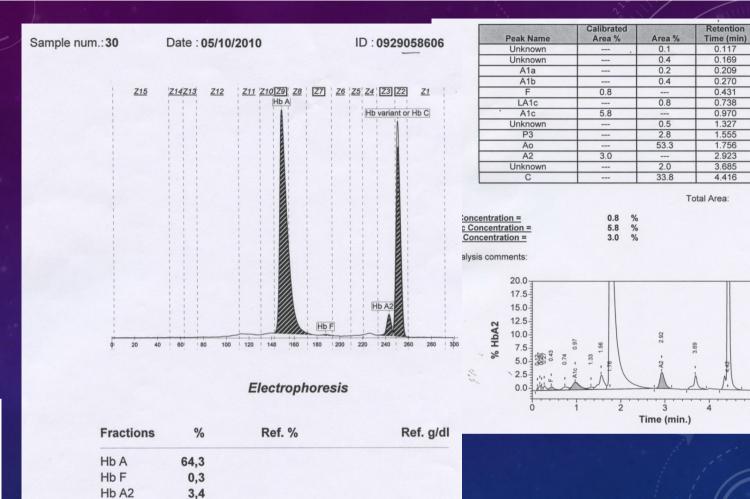
Analysis comments:



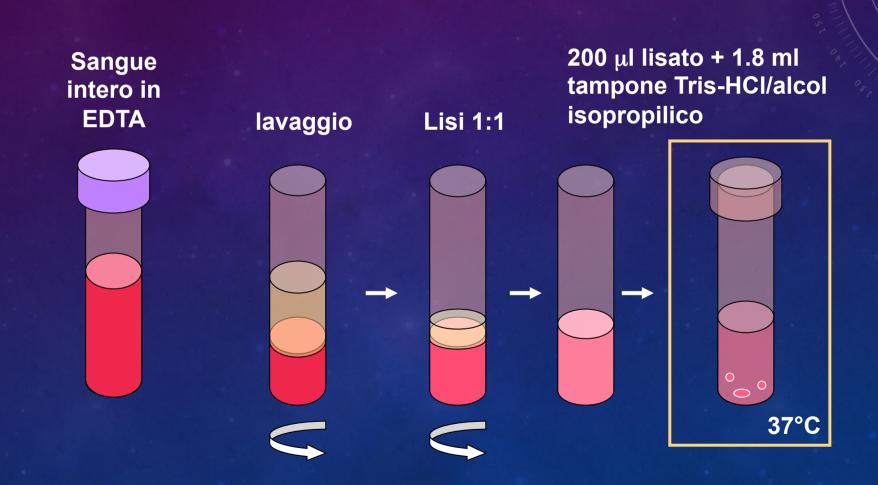
sesso	F
origine	Nigeria
età	31
RBC	4.27
Hb	11.9
HcT	35.5
MCV	83.1
МСН	27.8
Ferro	normale


TEST DI SICKLING



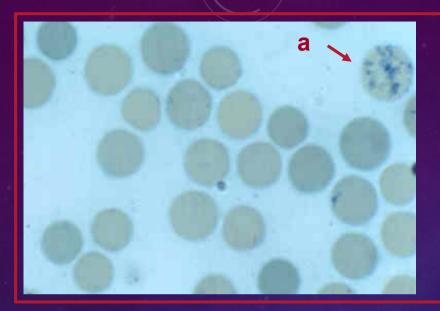

Test di sickling positivo (rappresentazione di ciò che accade in vivo)

C: relativi parametri Itologici e striscio Iferico

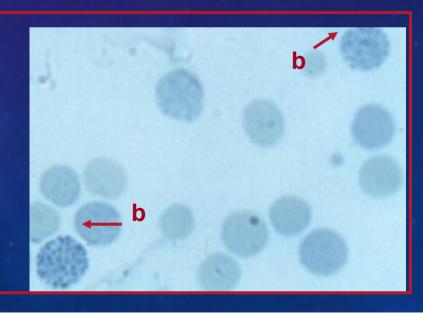

Sesso/Età	F/25
RBC (10 ¹² /L)	4.84
Hb (g/dL)	11.9
MCV (fL)	77.9
MCH (pg)	24.6
PCV (L/L)	37.7
Assetto marziale	Normale

Hb variant or H\$200

Anisocitosi, emazie a bersaglio e lieve microcitosi rappresentano una caratteristica di questa variante.


TEST DI TERMOLABILITÀ A 37°C SECONDO CARRELL DA UTILIZZARE NEL SOSPETTO DI VARIANTI INSTABILI

Variante fortemente instabile

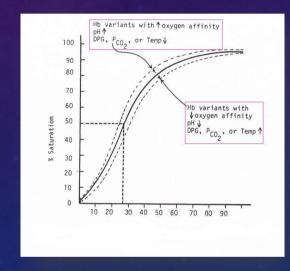

Nell'Hb TREVISO la ricerca di inclusi dopo incubazione a 37°C con BCB per 4 ore non ha evidenziato la comparsa di inclusi eritrocitari: tale comportamento comunque non è in contrasto con la moderata instabilità "in vitro" osservata al Test di Carrell.

(a): reticolocita

Test al BCB

Nella Figura a lato è riportato uno striscio eseguito dopo incubazione a 37°C con BCB per 4 ore nel caso di Hb H (Emoglobinosi H)

(b): inclusi



Diminuita affinità per O₂

- Cedono più facilmente l'O2
- Provocano anemia
- Provocano spesso cianosi
 - Var α: cianosi alla nascita
 - Var β: cianosi più tardiva

Aumentata affinità per O₂

- Provocano policitemia (eccetto quelle anche instabili (es. Hb Köln)
- Aumento del rischio trombotico
- Splenomegalia
- Epatomegalia

Misura P₅₀ (pressione parziale dell'O₂ nel sangue alla quale l'Hb è satura al 50%)

ale dell'O₂ nel sangue alla e l'Hb è satura al 50%)

P₅₀ diminuita


P₅₀ aumenta

TEST AGGIUNTIVI NEL PERCORSO DIAGNOSTICO

Possono essere suddivisi in:

- ✓ Test di conferma (Test biochimico con metodo alternativo, Test di sickling, Test di termolabilità secondo Carrell, BCB test per la ricerca di inclusi)
- ✓ Test integrativi (Reticolociti, Bilirubina, Aptoglobina, LDH)
- ✓ Test «riflessivi» (P₅₀, Metaemoglobina)

COMUNICAZIONE DEL RISULTATO

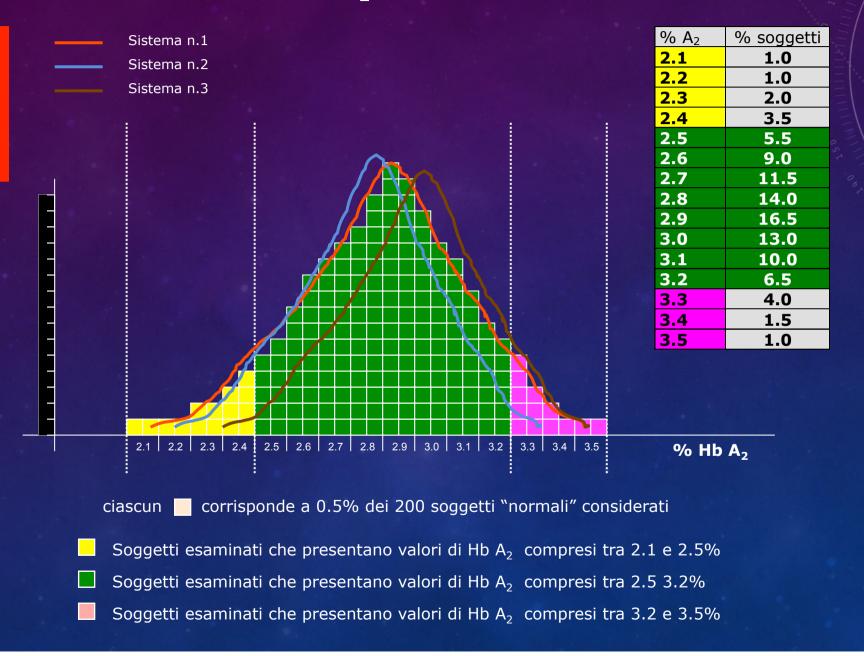
La comunicazione del risultato o referto rappresenta l'atto finale del Laboratorio, attraverso cui viene portato a conoscenza del paziente e del curante l'esito di un'indagine conseguente ad una richiesta o ad un quesito diagnostico. Affianca e guida il clinico nello studio e nella definizione della malattia, sia in fase diagnostica che di follow-up.

Il referto: mezzo efficace per contribuire a chiarire il quadro clinico e qualifica, nella fase post-analitica, il livello professionale di chi lo ha prodotto.

Il Royal College of Pathologists ha definito le linee guida per i commenti interpretativi in Biochimica.

Esse, ampiamente accolte dal Clinical Pathology Accreditation, descrivono le condizioni per commentare (presenza di notizie cliniche, impatto clinico del risultato, familiarità del Clinico con l'esame) e l'appropriatezza del commento come ambiti per la comunicazione (risultato che implica un intervento clinico, risultato inatteso, risultato che non risponde con certezza al quesito clinico) e tracciano in maniera puntuale le qualità e le notizie che il referto deve veicolare, affiché il Laboratorio espleti in maniera corretta il suo compito.

Royal College of Pathologists (2001) the duties of a doctor registered to practice Chemical Pathology – Guidelines on good Medical Practice in Pathology.


UANDO VA UTILIZZATO IL REFERTO ITERPRETATIVO?

- In caso di uso di più metodiche;
- In caso di utilizzo di test aggiuntivi;
- In caso di conclusione in un percorso diagnostico autonomo del Laboratorio;
- In presenza di risultati contraddittori;
- In caso di ulteriori procedure essenziali per una corretta diagnosi:
 - > ripetizioni del test,
 - invio in Laboratorio di II livello,
 - > estensione del test al partner e/o ai familiari,
 - > In caso di counselling genetico.

Nella diagnostica delle Hbpatie praticamente sempre

Distribuzione dell'Hb A₂ relativa a 200 soggetti "normali"

una cosa o i Valori di rimento a i Livelli isionali

- l numero va disteso in un commento informativo, intetico ma chiaro, per:
- Migliorare la qualità e l'impatto clinico dell'informazione data dal test (accuratezza diagnostica);
- Migliorare l'outcome del paziente (efficienza clinica);
- Ridurre i costi sanitari (efficienza economica).

La consulenza pre-test e il commento interpretativo costituiscono i momenti più importanti di interfaccia fra Clinica e Laboratorio. Essi indirizzano al miglior uso degli esami di Laboratorio solo se si concretizzano in un clima di aiuto reciproco e non tanto di «banale» pratica prescrittiva (il clinico che prescrive ed il laboratorista che si limita ad eseguire fornendo esclusivamente dati numerici).

E' chiaro che l'interpretazione e la consulenza, da parte del laboratorista, devono essere:

- Esperte;
- Derivate dal confronto dialettico con la Clinica;
- Non preconfezionate.

Esempi di commenti interpretativi nell'adulto

							The second second	5 / /
C a si	Hb	MCV	МСН	HbA ₂	HbF	HbX	Sid. Transf Ferr.	Conclusione
1	N	N	N	N	N	NP	N	Quadro normale: si esclude la pres. di β-talas delle + freq. varianti Hb.
2	N	N/↓	N/↓	N/↑	N	NP	N	Quadro comp. con β-talassemia tipo "lieve" c "silente". In caso di gravidanza: esami al partr
3	N/↓	$\downarrow \downarrow$	\downarrow	$\uparrow \uparrow$	N/↑	NP	N	Quadro compatibile con β-talassemia eteroz
4	N	$\downarrow / \downarrow \downarrow$	↓/↓↓	N/↓	N	NP	N	Non si esclude un' α -talassemia o una δ + β -ta Eventuale definizione nel Laboratorio di rifer
5	N/↓	↓/↓↓	↓/↓↓	N/↓	3-15%	NP	N	Quadro compatibile con $\delta\beta$ -talassemia "tipo siciliano" (da confermare). In caso di gravida esami al partner.
6	N/↓	ψ/ψ	↓/↓↓	N/↓	N	NP	$\downarrow / \downarrow \downarrow$	Sideropenia: si consiglia di ripetere l'esame de eventuale terapia marziale.
7	N	N	N	$\downarrow \downarrow$	N	NP	N	Possibile δ -talassemia. Eventualmente da copresso il Laboratorio di riferimento.
8	N	N	N	N	1-8%	NP	N	Quadro compatibile con presenza di una HPF

difetto polimorfico dei geni γ. Eventualmente confermare presso il Laboratorio di riferimer

di, G. Barberio et al.
nosi di laboratorio e
nzione delle
obinopatie:
lerazioni e proposte
omunicazione del
to degli esami di primo

mica Clinica, 2010,

l, n. 4.

Icuni esempi i conclusioni liagnostiche Ila nascita

valdi, G. Barberio et al.

ccomandazioni per la diagnosi natale delle emoglobinopatie» chimica Clinica, 2015, 39, n. 2

Alcuni assetti Hb rilevabili alla nascita e possibili conclusioni degli esami di 1°livello

- 1	Casi	Informazioni disponibili	Esami di 1°livello	Conclusione degli esami di 1°livello con commento
	1	 nato a termine familiarità per Hb S origini : Sicilia-Sicilia 	HbA = 26% HbF = 74%	Assetto Hb compatibile con lo stato di normalità (assenza di difetti globinici)
	2	 nato a termine genitori: nessuna informazione genetica origini: Nigeria-Nigeria 	HbA = 16% HbF = 84%	L'assetto Hb non consente di escludere la presenza di trait talassemici la cui definizione è possibile tra 6-8 mesi e comunque al completamente dello switch dell'HbF. Se la conclusione certa è urgente è necessario un esame di 2°livello.
	3	 nato a termine genitori: nessuna informazione genetica origini : Albania - Italia 	HbA = 10% HbF = 82% HbX = 8% sickling positivo	Presenza di HbS allo stato eterozigote
	4	 nato a termine familiarità per talassemia origini :ltalia-ltalia 	HbA = 8% HbF = 92%	Assetto Hb compatibile con la presenza di Beta Talassemia eterozigote.
	5	 nato a termine genitori: nessuna informazione genetica origini : Albania-Sicilia 	HbA = 5% HbF = 95%	I risultati ottenuti potrebbero configurare la presenza di un doppio difetto a carico dei geni beta globinici per la cui esatta definizione sono necessari esami di 2°livello.
	6	 nato a termine i genitori hanno eseguito diagnosi prenatale: feto con β talassemia et. origini : Albania-Albania 		Conferma del risultato della diagnosi prenatale: il neonato risulta portatore eterozigote di $\boldsymbol{\beta}$ talassemia
	7	 nato a termine genitori: nessuna informazione genetica origini: Italia-Italia 	HbA = 0% HbF = 100%	L'assetto Hb è compatibile con la presenza di un doppio difetto a carico dei geni beta globinici per la cui caratterizzazione sono necessari esami di 2°livello.
	8	 nato a 32 settimane genitori: nessuna informazione genetica origini : Italia-Italia 	HbA = 12% HbF = 84%	L'assetto Hb non consente di escludere la presenza di trait beta talassemico la cui definizione è possibile tra 6-8 mesi e comunque al completamento dello switch dell'Hb F.
	9	 nato a termine genitori: madre con micro-citosi non accertata, padre non esaminato origini: Italia-Italia 	HbA = 14% HbF = 82% HbX = 6% sickling negativo HbBart's 4%	Presenza di variante Hb presumibilmente appartenente alle alfa catene globiniche. L'Hb Bart's rilevata lascia supporre la presenza di alfa talassemia. Per una conclusione certa si consigliano test di 2°livello.
	10	 nato a termine genitori: nessuna informazione genetica origini: Italia-Italia 	Su sangue cordonale : HbA = 35% HbF = 64% HbA2 = 0.8%	Occorre escludere eventuali contaminazioni con sangue materno.

caso di referto erpretato

35 anni
Maschio
Italiano
No
No
Microcitosi

Parametri ematologici

Parametro	Valore	Unità di misura
RBC	5,12	10 ⁶ /μL
MCV	65,6	fL
МСН	19,5	pg
Hb	10,0	g/dL
PCV	33	%

Bilancio marziale

Parametro	Valore
Sideremia	Norma
Transferrina	Norma
Ferritina	Norma

Conclusioni:

Quadro compatibile con una β talassemia eterozigote. Se il valore della Hb resta costantemo basso e se presenti segni e sintomi probanti è necessario un esame molecolare per valutare la presenza del composto emoglobinico β talassemi triplicazione del gene α . Si rende necessario esaminare l'assetto emoglobinico della partner, si gravida.

Caratteristiche di un buon referto nella diagnostica delle emoglobinopatie

- data di raccolta del campione
- numero di identificazione del campione
- nome dell'individuo testato e la sua data di nascita
- data della risposta
- tecniche usate
- risultati del test (assetto qualitativo e quantitativo)
- ranges di normalità (per HbA₂ e HbF)
- eventuali varianti riscontrate e relative percentuali

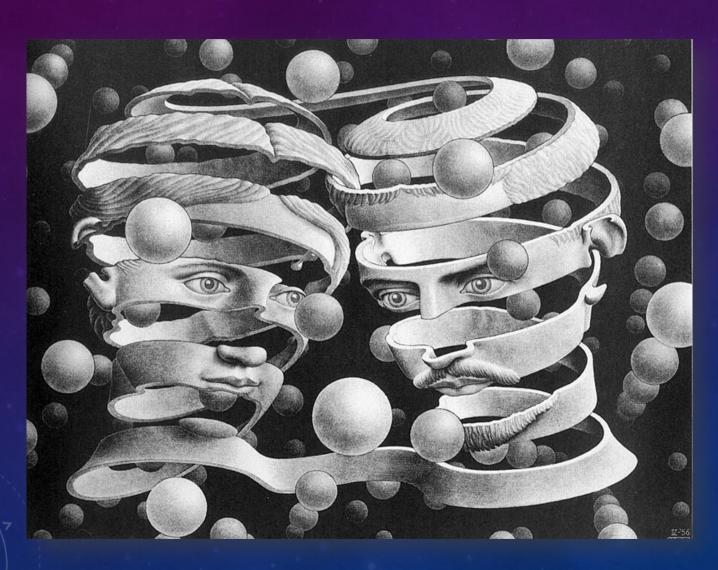
In Laboratorio che aderisca all'esigenza della medicina elle 4 P (predittiva, preventiva, partecipativa e ersonalizzata), deve continuare ad avere il ruolo di onsulente oltre il referto stesso.

ò richiede:

Formazione continua

Competenza

Garanzia che l'intero iter diagnostico – di Primo Livello e di Livello Intermedio - sia supportato nello stesso Laboratorio e non disperso in varie sedi



lell'evoluzione della Medicina in Laboratorio...

...siamo passati dal to do al to act ...

...ma dobbiamo puntare al to share in .

NICA E LABORATORIO:

M.C. Escher Legame infinito 1956

Ti porto dentro me come fa il giorno con la sua luce inesorabilmente insieme.
Ché quando anche le nubi grigie e grandi incombono da sopra minacciando di dividerli l'un l'altro richiamandosi vanno a nascondersi altrove e uniti ancora, lì in silenzio scavalcano le ansie...

Dalla raccolta «Ai margini del bu GB