

L D. 1088

ALMA MATER STUDIORUM Università di Bologna

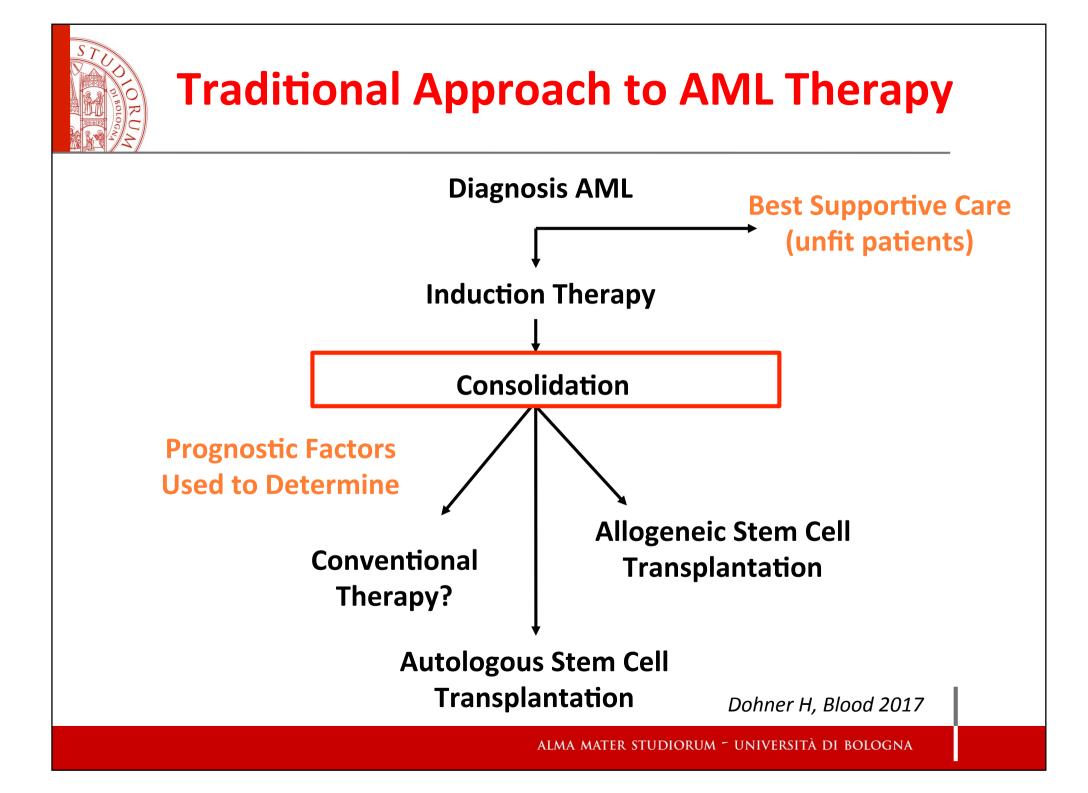
Post remission therapy and "maintenance"?

Cristina Papayannidis, MD, PhD Institute of Hematology and Medical Oncology "L. and A. Seràgnoli"

University of Bologna

avenna, Albergo Cappello October 27, 2017

Background


- After achievement of a first CR, **virtually all patients relapse** in the absence of further treatment
- The **aims** of a post-remission therapy are:

TO ERADICATE RESIDUAL LEUKEMIC CELLS

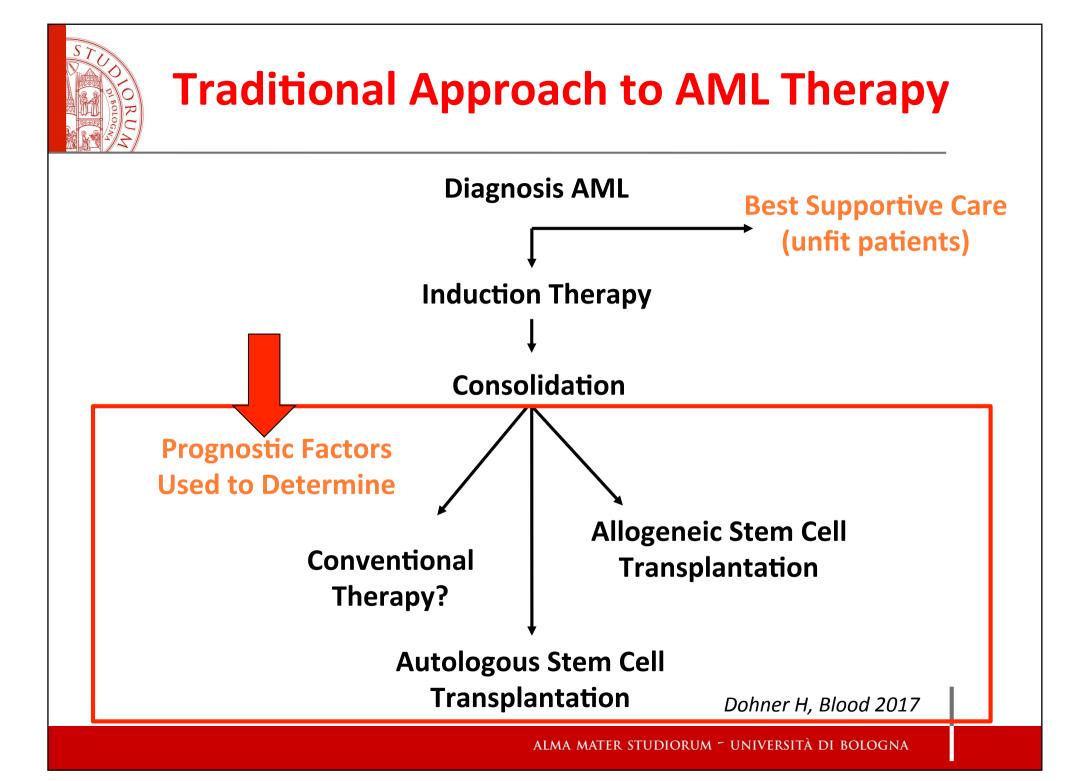
TO PREVENT RELAPSE

TO PROLONG SURVIVAL

Schlenk F.R., Haematologica 2014; Rashidi A, Blood 2016

Consolidation AML Therapy: 2017 ELN recommendations

Younger patients, eligible for intensive chemotherapy	
Favorable-risk genetics	 2-4 cycles of IDAC (1000-1500 mg/sqm IV over 3h q12h, d 1-3; or 1000-1500 mg/sqm IV over 3 h d 1-5 or 6)
Intermediate-risk genetics	 Allogeneic HCT from matched-related or unrelated donor
	 ✓ 2-4 cycles of IDAC (1000-1500 mg/sqm IV over 3h q12h, d 1-3; or 1000-1500 mg/sqm IV over 3 h d 1-5 or 6), or
	 High-dose therapy and autologous HCT
Adverse-risk genetics	 Allogeneic HCT from matched-related or unrelated donor

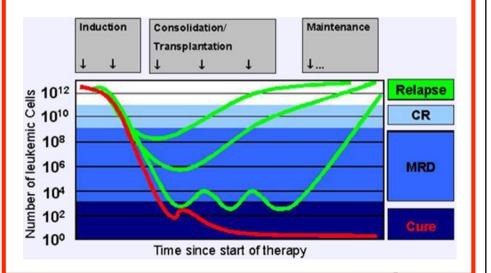

Dohner H, Blood 2017

Consolidation: where do we stand now?

- No convincing evidence that cytarabine regimens at 3000 mg/ sqm are more effective than regimens at intermediate-dose levels at 1000 to 1500 mg/sqm, with or without the addition of an anthracycline
- How many cycles of consolidation therapy? Usually 2 to 4
- Intensified postremission chemotherapy in high-risk patients is without clear benefit (especially older patients)

Schaich M, J Clin Oncol 2011; Burnett AK, J Clin Oncol 2013; Miyawaki S, Blood 2011; Thomas X, Blood 2011; Lowemberg B, Blood 2013; Burnett AK, J Clin Oncol 2013; Itzykson R, Haematologica 2011

Prognostic Factors


PRETREATMENT FACTORS

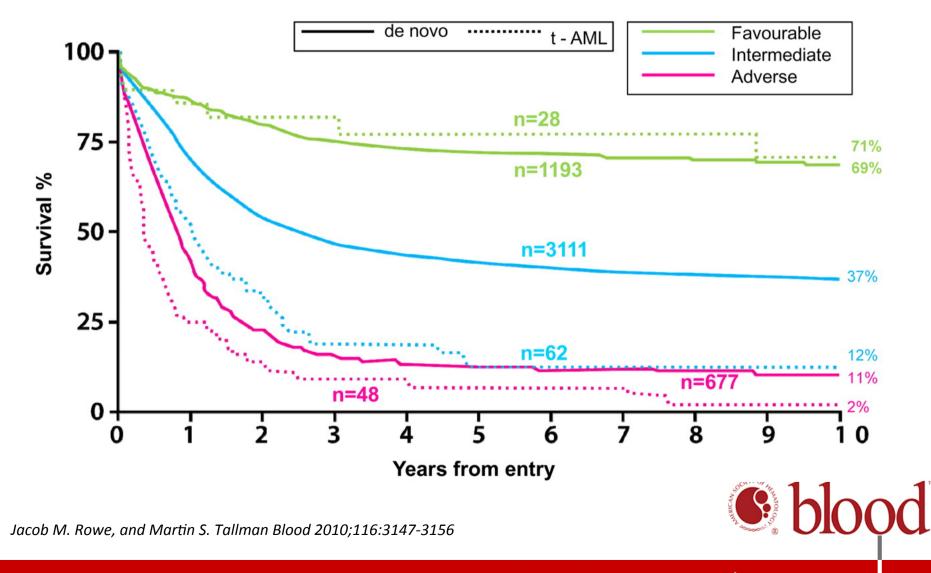
- Patient-related factors (age, PS, comorbidities)
- AML-related genetic factors

Risk Category ^b	Genetic Abnormality	
Favorable	t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i> inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i> Mutated <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -ITD ^{brw(e)} Biallelic mutated <i>CEBPA</i>	
Intermediate	 Mutated NPM1 and FLT3-ITD^{ngn(c)} Wild type NPM1 without FLT3-ITD or with FLT3-ITD^{low(c)} (w/o adverse- risk genetic lesions) t(9;11)(p21.3;q23.3); MLLT3-KMT2A^d Cytogenetic abnormalities not classified as favorable or adverse 	
Adverse	t(6;9)(p23;q34.1); <i>DEK-NUP214</i> t(v;11q23.3); <i>KMT2A</i> rearranged t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i> inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2,MECOM(EVI1)</i> -5 or del(5q); -7; -17/abn(17p) Complex karyotype, [*] monosomal karyotype ^t Wild type <i>NPM1</i> and <i>FLT3</i> -ITD ^{hgh(e)} Mutated <i>RUNX1</i> ^e Mutated <i>RUNX1</i> ^e Mutated <i>ASXL1</i> ^e	

FACTORS AFTER DIAGNOSIS

MRD monitoring

Dohner H, Blood 2017



After Consolidation: 2017 ELN recommendations

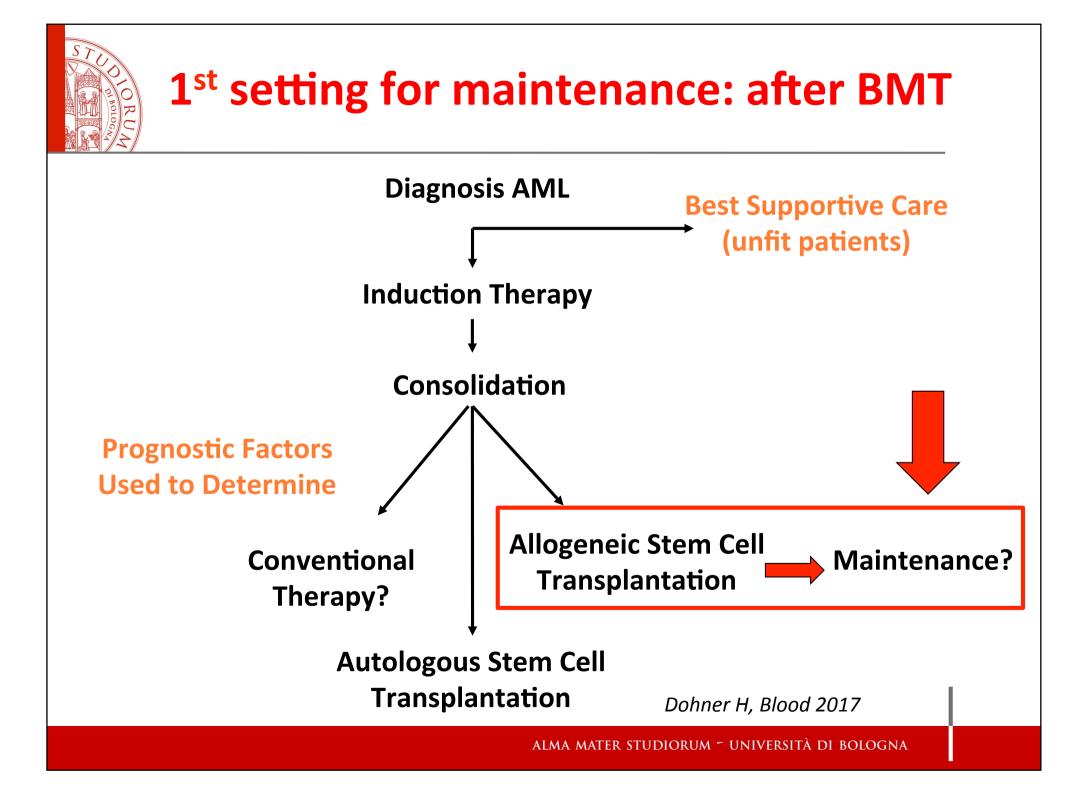
Younger patients, eligible for intensive chemotherapy	
Favorable-risk genetics	 ✓ 2-4 cycles of IDAC (1000-1500 mg/sqm IV over 3h q12h, d 1-3; or 1000-1500 mg/sqm IV over 3 h d 1-5 or 6)
Intermediate-risk genetics	 Allogeneic HCT from matched-related or unrelated donor
MRD	 ✓ 2-4 cycles of IDAC (1000-1500 mg/sqm IV over 3h q12h, d 1-3; or 1000-1500 mg/sqm IV over 3 h d 1-5 or 6), or
	✓ High-dose therapy and autologous HCT
Adverse-risk genetics	 Allogeneic HCT from matched-related or unrelated donor

Dohner H, Blood 2017

AML outcome (<60 years)

How can we improve these results? Maintenance in AML?

Biology of AML: heterogeneous disease

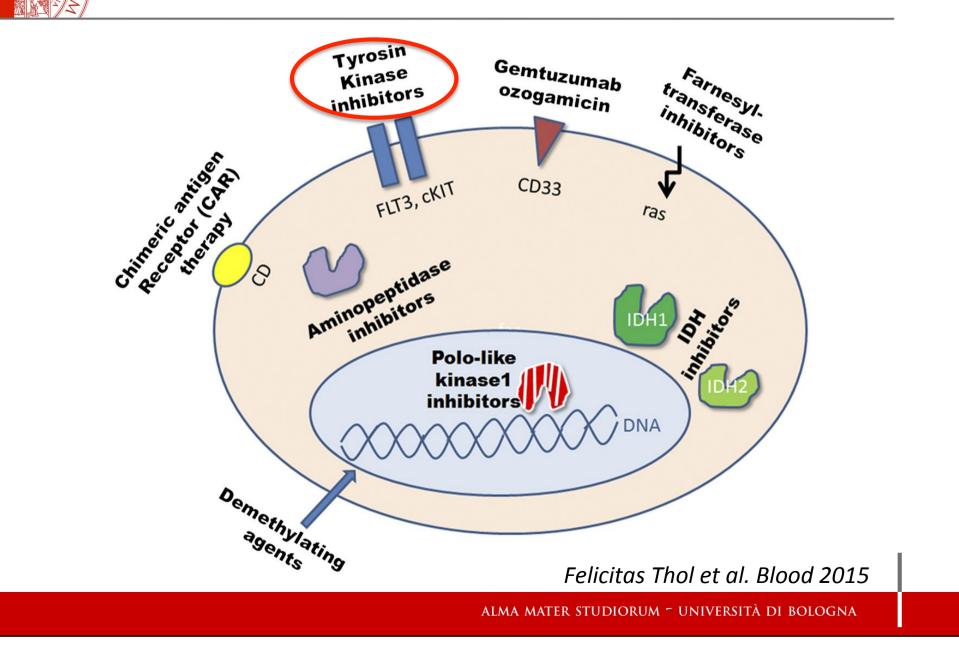

Many molecular alterations

"THE alteration=THE therapy" is not applicable **NGS technologies** can deeply characterize every single AML

Some mutations are druggable

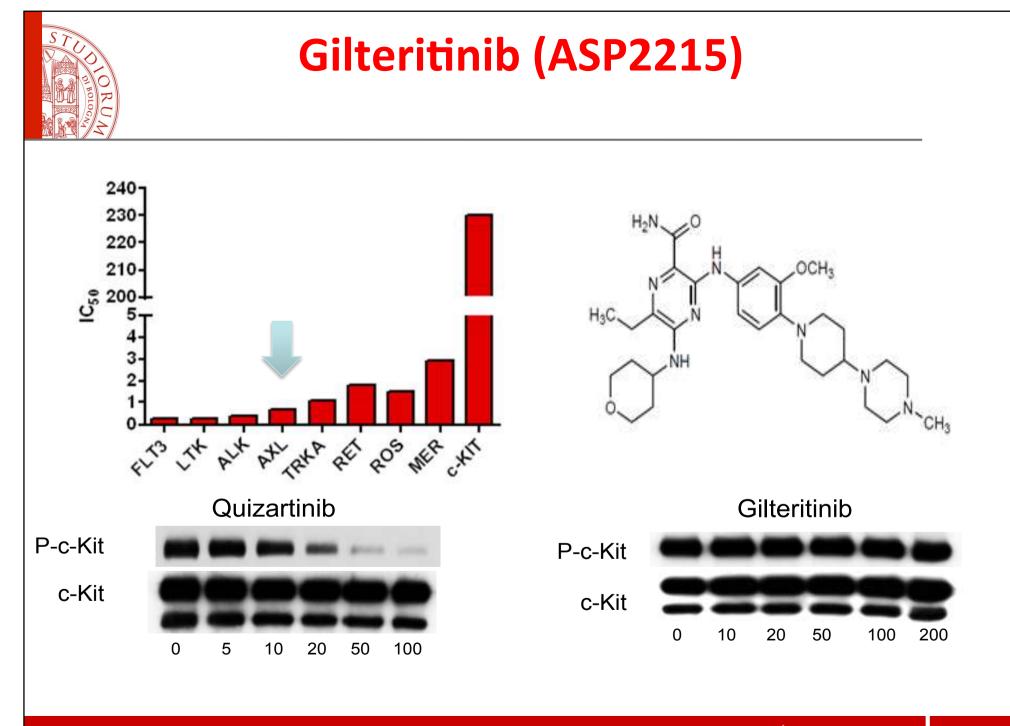
Toxicities seem to be manageable

Immunotherapy is emerging



Maintenance therapy after BMT

- Maintenance therapy can, at least theoretically, contribute to cure by maintaining the disease burden in a minimal state until the immunological effect of graft-versus-leukemia becomes dominant, potentially resulting in eradication of residual disease
- No maintenance Randomized Clinical Trials has yet been concluded in this setting
- Many early-phase studies have been performed to assess safety an feasibility of new drugs


Rashidi A, Blood 2016

Drugs in clinical development...after BMT?

Ongoing Clinical Trials: FLT3 inhibitors as maintenance post BMT

	Phase	NCT	Locations
Crenolanib Maintenance Following Allo SCT in FLT3-positive AML patients	II	NCT02400255	USA
A Trial of the FLT3 Inhibitor Gilteritinib Administered as Maintenance Therapy Following Allo SCT for Patients With FLT3 ITD AML	III	NCT02997202	Australia, Denmark, Japan, Italy, Germany, Korea, Poland, Spain
Protocol in Acute Myeloid Leukemia With FLT3-ITD (Midostaurin)	II	NCT01477606	Austria, Germany
		www.ClinicalTrials	.gov
ALMA	MATER STUD	IORUM - UNIVERSITÀ DI	BOLOGNA

Axl in AML

- *Axl* is a member of the Tyro3, Axl, Mer (TAM) receptor family and **mediates proliferation and survival of AML cells**
- *Axl* overexpression in AML confers **drug** resistance and is associated with adverse prognosis
- AML cells induce expression of the Axl ligand Gas6 in bone marrow stroma cells, which amplifies their growth and therapy resistance
- Axl inhibition suppresses the FLT3 positive AML in vivo
- Axl inhibition is also active in FLT3 negative (but Axl expressing) AML in vivo

Ben Batalla et al, Blood 2013; Park et al, Blood 2013

Phase I-II Trial

Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study

Alexander E Perl*, Jessica K Altman*, Jorge Cortes, Catherine Smith, Mark Litzow, Maria R Baer, David Claxton, Harry P Erba, Stan Gill, Stuart Goldberg, Joseph G Jurcic, Richard A Larson, Chaofeng Liu, Ellen Ritchie, Gary Schiller, Alexander I Spira, Stephen A Strickland, Raoul Tibes, Celalettin Ustun, Eunice S Wang, Robert Stuart, Christoph Röllig, Andreas Neubauer, Giovanni Martinelli, Erkut Bahceci, Mark Levis

<u>Patients population</u>: >=18 years, with AML refractory to induction therapy or relapsed after achieving remission with previous treatment.

Seven dose-escalation or dose-expansion cohorts assigned to receive once-daily doses of oral gilteritinib (20 mg, 40 mg, 80 mg, 120 mg, 200 mg, 300 mg, or 450 mg). <u>Primary endpoints</u>: safety, tolerability, and PK of gilteritinib

Perl A.E. et al, Lancet Oncology 2017

Results: Safety (I)

- 252 adults enrolled (dose-escalation (n=23) or dose-expansion (n=229) cohorts)
- MTD: 300 mg/day
- DLTs: grade 3 diarrhoea; grade 3 elevated aspartate aminotransferase
- Grade 3–4 adverse events irrespective of relation to treatment:

-febrile neutropenia (97 [39%] of 252) -anaemia (61 [24%])

-thrombocytopenia (33 [13%])

-sepsis (28 [11%])

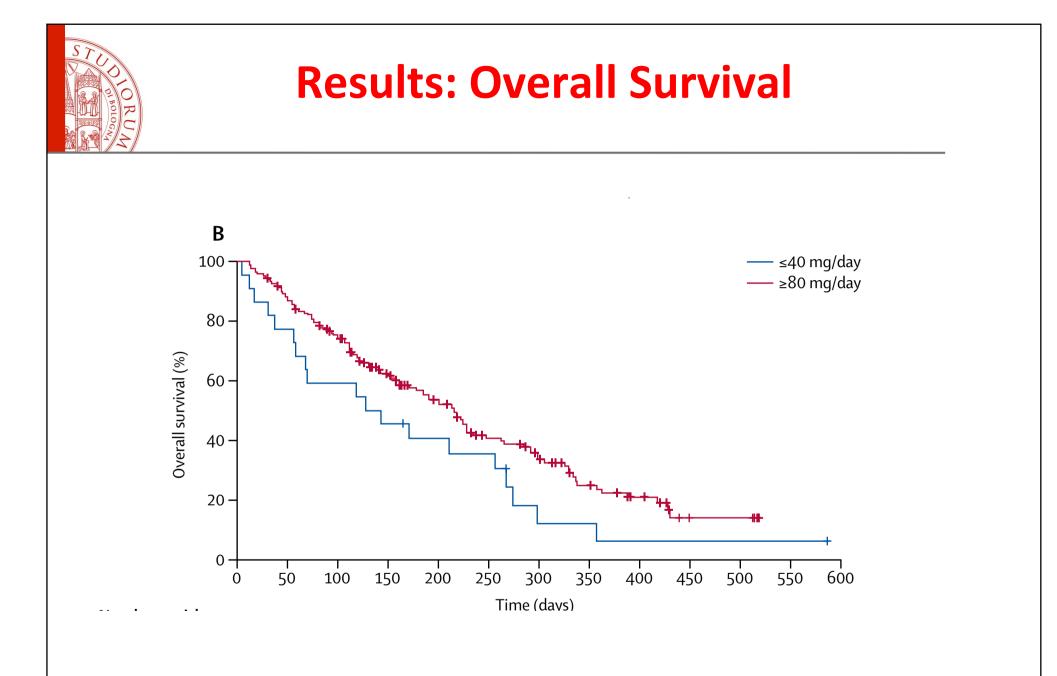
-pneumonia (27 [11%])

Perl A.E. et al, Lancet Oncology 2017

Results: Safety (II)

- Commonly reported treatment-related adverse events:
- -diarrhoea (92 [37%])
- -anaemia (86 [34%])
- -fatigue (83 [33%])
- -elevated aspartate aminotransferase (65 [26%])
- -increased alanine aminotransferase (47 [19%])
- Serious adverse events occurring in 5% or more of patients:
- -febrile neutropenia (98 [39%] of 252; five related to treatment)
- -progressive disease (43 [17%])
- -sepsis (36 [14%]; two related to treatment)
- -pneumonia (27 [11%])

Perl A.E. et al, Lancet Oncology 2017


Results: Efficacy

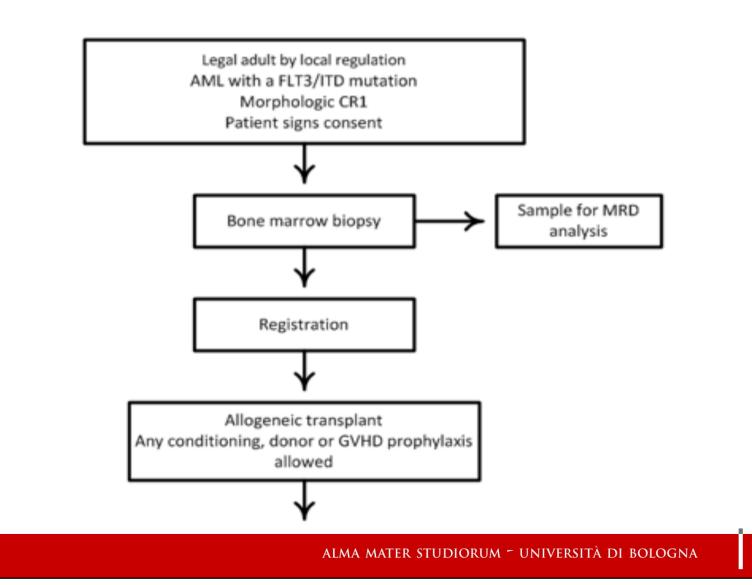
	Full analysis set (n=249)	FLT3 ^{™™} (n=58)	FLT3 ^{mut+} (n=191)	
			All patients (n=191)	Patients receiving ≥80 mg/day (n=169)
Complete remission	19 (8% [5–12])	1 (2% [0-9])	18 (9% [6-15])	18 (11% [6–16])
Complete remission with incomplete platelet recovery	10 (4% [2–7])	0	10 (5% [3-9])	10 (6% [3-11])
Complete remission with incomplete haematological recovery	46 (18% [14–24])	4 (7% [2–17])	42 (22% [16–29])	41 (24% [18-31])
Partial remission	25 (10% [7–15])	2 (3% [0–12])	23 (12% [8–18])	19 (11% [7–17])
Composite complete remission	75 (30% [25–36])	5 (9% [3–19])	70 (37% [30-44])	69 (41% [33-49])
Overall response	100 (40% [34-47])	7 (12% [5–23])	93 (49% [41–56])	88 (52% [44-60])
Duration of response (weeks)	17 (14–29)	12 (3–17)	20 (14–33)	20 (14-33)
Overall survival (weeks)	25 (20–30)	17 (11–21)	30 (23-33)	31 (24-59)

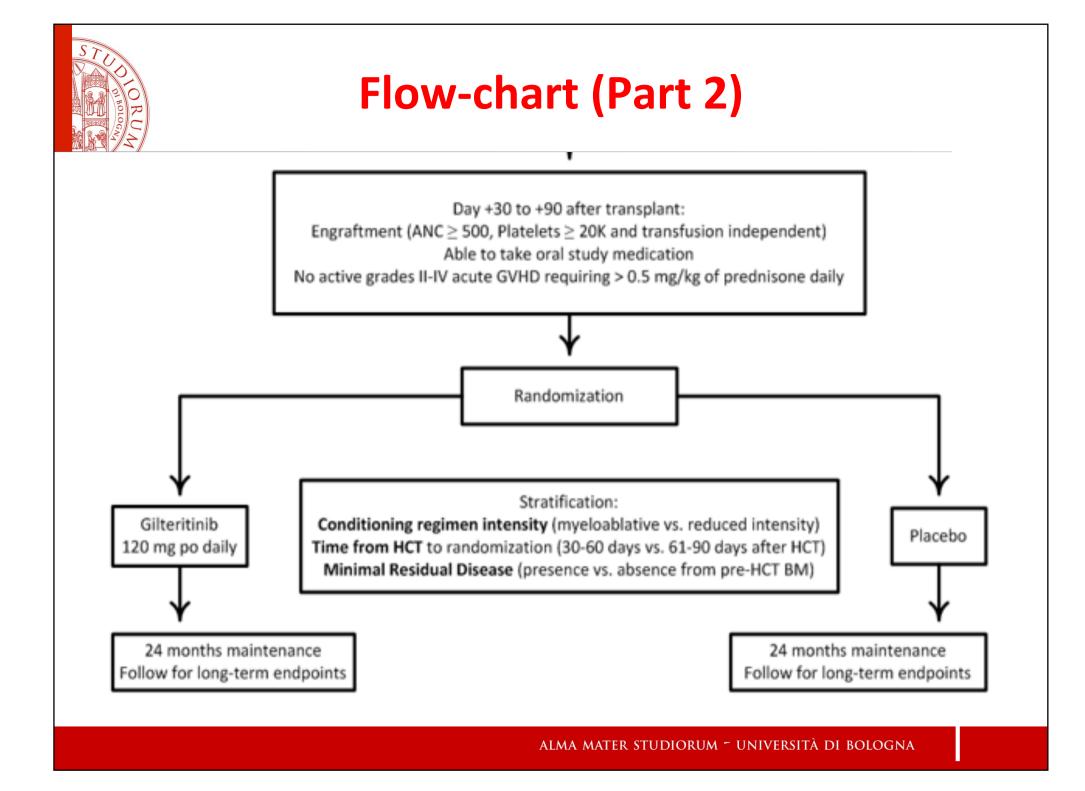
Data are number of patients (% [95% CI]), or median (95% CI). The full analysis set included all patients who received at least one dose of study drug and who had at least one datapoint post-treatment. FLT3^{mut+}=FLT3 mutation-positive. FLT3^{WT}=wild-type FLT3.

Table 4: Responses to gilteritinib, overall and by FLT3 mutation status (full analysis set)

Perl A.E. et al, Lancet Oncology 2017

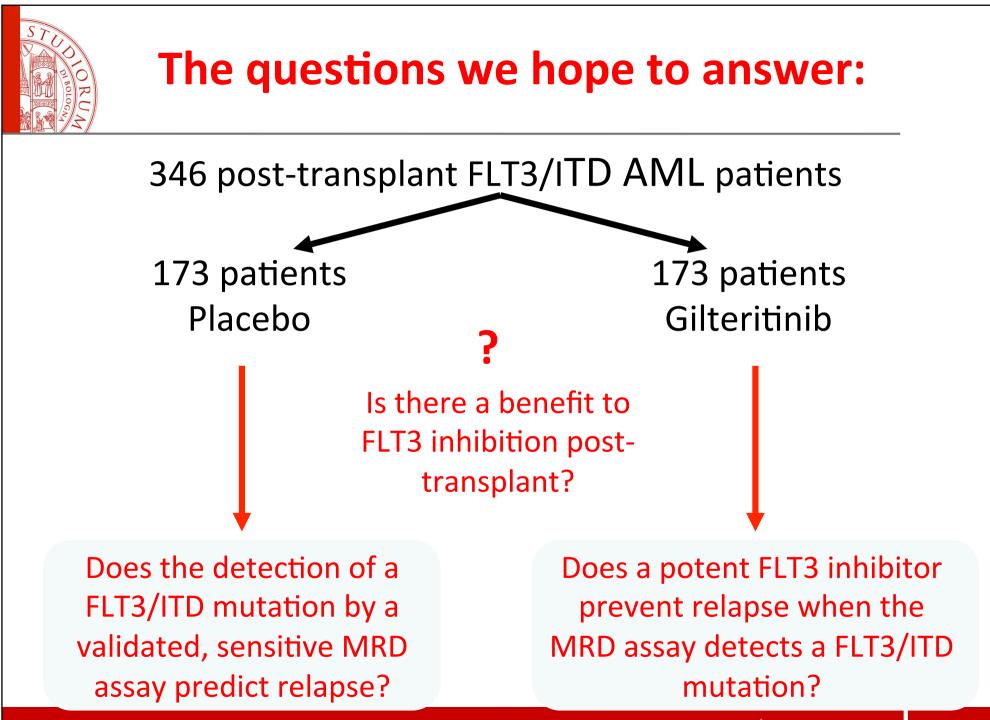
Perl A.E. et al, Lancet Oncology 2017

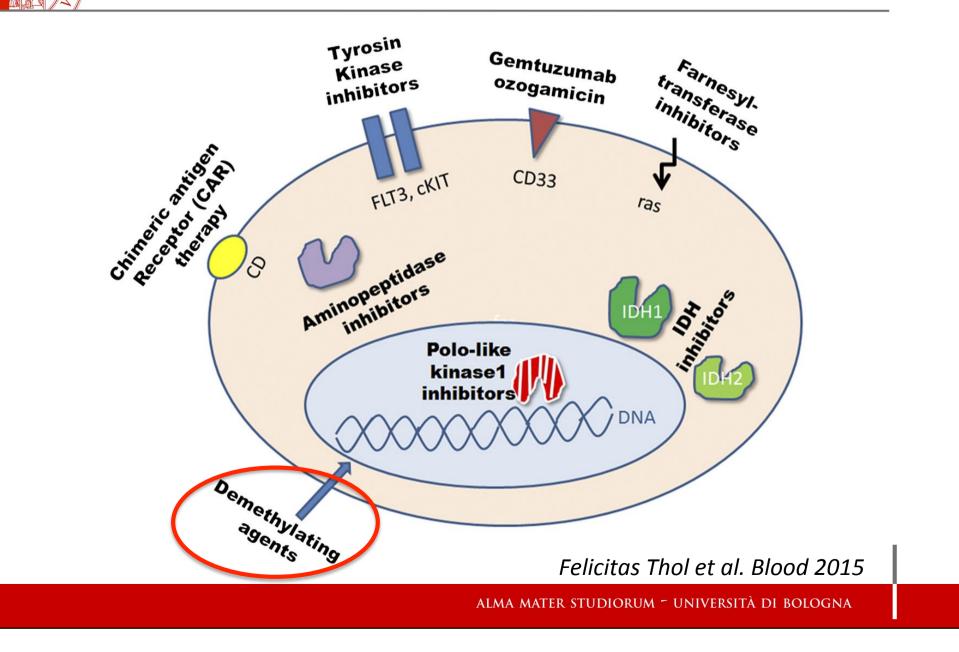



Gilteritinib as Maintenance after BMT

Study Information	Details	
Study Number	ASTELLAS PROTOCOL 2215-CL-0304 BMT CTN PROTOCOL 1506	
Full Title	A Multi-Center, Randomized, Double-Blind, Placebo- Controlled Phase III Trial of the FLT3 Inhibitor Gilteritinib Administered as Maintenance Therapy Following Allogeneic Transplant for Patients with FLT3/ITD AML	
Treatment	Gilteritinib vs. Placebo as 2 yr. maintenance after HSCT	
Participants	 FLT3/ITD + AML in Complete Response 1 (CR1) ~ 1000 Screened 532 Registered 346 Randomized 	
Sites	145 sites in NA, EU, APAC	

Flow-chart (Part 1)





2215-CL-0304 Objectives

- <u>Primary</u>
 - To compare relapse-free survival (RFS) between participants with FLT3/ITD AML in CR1 who undergo HCT and are randomized to receive gilteritinib or placebo beginning after the time of engraftment for a two year period
- <u>Secondary</u>
 - To determine the **safety and tolerability** of gilteritinib after HCT.
 - To compare overall survival (OS), non-relapse mortality (NRM) and eventfree survival (EFS) in participants treated with gilteritinib as maintenance therapy after HCT compared to those treated with placebo.
 - To compare 6-month cumulative incidence of grades II-IV and III-IV acute GVHD and 12-month and 24-month cumulative incidence of mild, moderate, and severe GVHD in participants treated with gilteritinib as maintenance therapy after HCT compared to those treated with placebo.
 - To examine the effect of pre- and post-transplant MRD on RFS and OS

Drugs in clinical development...after BMT?

Ongoing Clinical Trials: HMA as maintenance after BMT

Rationale for 5Azacitidine after BMT:

-up-regulates putative tumor antigens, inducing a CD8+ T cell response that could increase a graft vs leukemia effect (Craddock, 2015)

-reduces risk of relapse and GVHD post-allograft (Platzbecker, 2012; de Lima, 2010)

	Phase	NCT	Locations
Maintenance Low Dose 5'-Azacitidine Post T Cell Depleted AlloBMT for Patients With MDS and AML With High Risk for Post-Transplant Relapse	II	NCT01995578	USA
Haplo-SCT vs ASCT With or Without Decitabine in AML CR1	III	NCT02059720	China
Vidaza and Valproic Acid Post Allogeneic Transplant for High Risk AML and MDS	II	NCT02124174	USA
www.ClinicalTrials.gov			s.gov
ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA			OGNA

CC-486-AML-002: Phase I/II Trial of CC-486 in Post-Transplant MDS/AML Study Design

Study start: 7/2013

 $\begin{array}{c|c} 3+3 \text{ Design (28-day cycles)} \\ \hline Cohort & CC-486 \text{ Maintenance} \\ 1 (n=3) & 200 \text{ mg QD days 1-7} \\ 2 (n=3) & 300 \text{ mg QD days 1-7} \\ \hline 3a (n=3) & 150 \text{ mg QD days 1-4} \\ \hline 3 (n=3) & 200 \text{ mg QD days 1-14} \\ \hline \text{Expansion cohort (n = 11)} \end{array}$

Continue treatment until PD, intolerable AEs, or maximum duration of therapy^a

Post-Transplar

COMPLETED

• Key endpoints

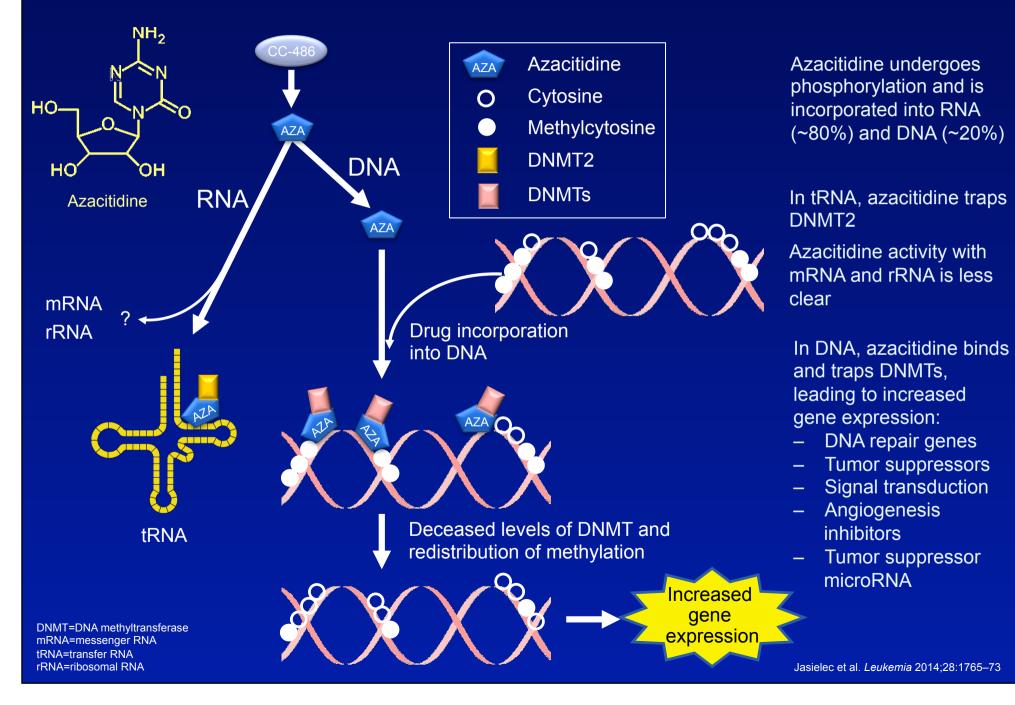
N = 31 planned

Post-alloSCT

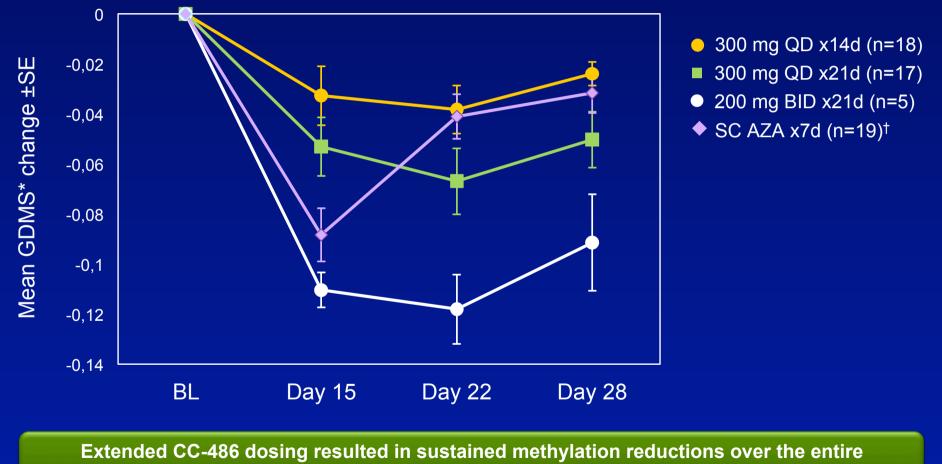
MDS or AML

Within 42-84 days

following alloSCT


- Primary: MTD
- Secondary: incidence of acute/chronic GVHD, disease recurrence/ relapse rate, safety, PK, preliminary efficacy

^a 12 months; however, patients not meeting discontinuation criteria may elect to continue treatment. ClinicalTrials.gov. http://clinicaltrials.gov/show/NCT01835587. Accessed September 30, 2016.


CC-486 (oral azacitidine) vs Vidaza[®]: key differences

	CC-486	Vidaza®
Brand name	TBD	Vidaza®
Formulation	Tablet	Lyophilized powder in 100-mg, single-use vials ¹
Route of administration	Oral	Injection (subcutaneous or intravenous) ^{1,2}
Dosing	Planned: 300 mg QD x14 days/28-day cycles for AML maintenance ³	Approved: 75 mg/m²/day on days 1-7 of 28-day cycles ¹
Phase in development	Phase 3 ^{3,4}	Marketed
Approvals	Not currently approved for any indication	Approved in the US for the treatment of all FAB subtypes of MDS ¹ Approved in the EU for CMML, higher-risk MDS, and AML, in patients not eligible for SCT

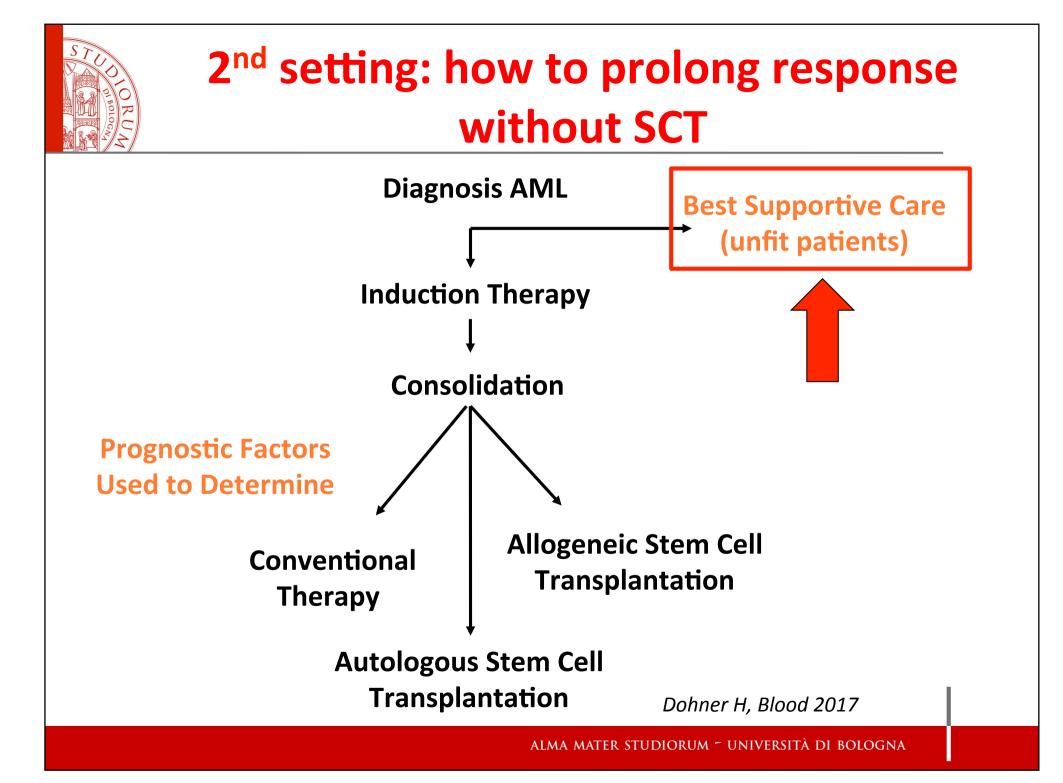
CC-486 mechanism of action

Methylation changes with CC-486 extended dosing regimens and SC azacitidine

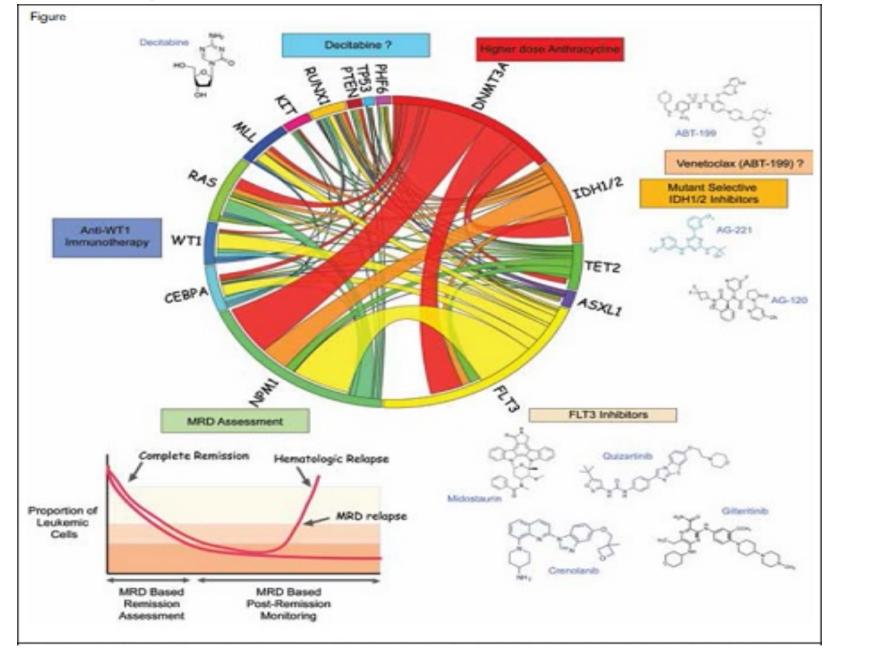
treatment cycle^{1,2}

*Global DNA Methylation Score : a single methylation score for each sample, based on the percentage of highly methylated loci [†]75 mg/m²/day BL. baseline

1. Laille et al. *Plos One* 2015;10(8):e0135520 2. Savona et al. *Blood* 2015 126:452. Abstract 452

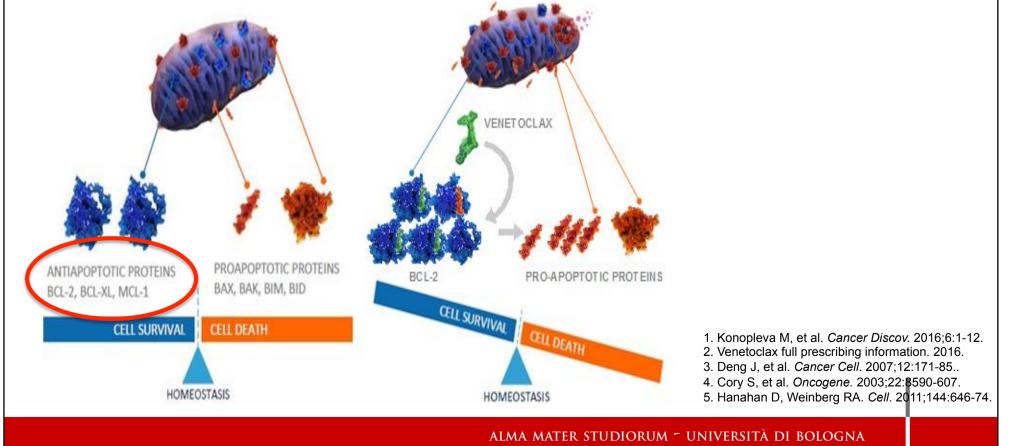

QUAZAR Trial Post-Transplant CC-486-AML-002 Key Inclusion Criteria^{1,2}

- Age \geq 18 years
- Diagnosis of MDS or AML^a and undergoing alloSCT
- Post-alloSCT bone marrow blasts ≤ 5% within 21 days prior to starting therapy
- ECOG PS 0-2
- No treatment with any of the following therapies after alloSCT:
 - Chemotherapies or investigational agents
 - Hypomethylating agents
 - Lenalidomide, thalidomide, or pomalidomide


CC-486-AML-002: Phase I/II Trial of CC-486 in Post-Transplant MDS/AML Preliminary Results

- Data available for 21 patients (2 patients with IPSS Int-2 MDS and 19 patients with AML) across the 4 cohorts as of January 14, 2016
- 4 patients completed all 12 CC-486 cycles
 - 13 discontinued and 4 remain on study
- MTD was not reached
- 1 patient in Cohort 3 (200 mg × 14 days) had a DLT (grade 4 neutropenia, grade 3 pneumonia) and later died from thrombotic microangiopathy
- Most frequent grade 3/4 AEs were neutropenia, thrombocytopenia, and diarrhea (n = 4 each)
- 5 patients had GVHD at study entry
 - 2 cases worsened on treatment and 1 during follow-up
- 3 cases of gastrointestinal GVHD occurred on study
- Relapse was higher with 7-day (4/7, 57%) vs 14-day (3/14, 21%) dosing

Progress and Promise: Precision Medicine for Patients With Acute Myeloid Leukemia Taylor J,


Taylor J, The Hematologist 2017

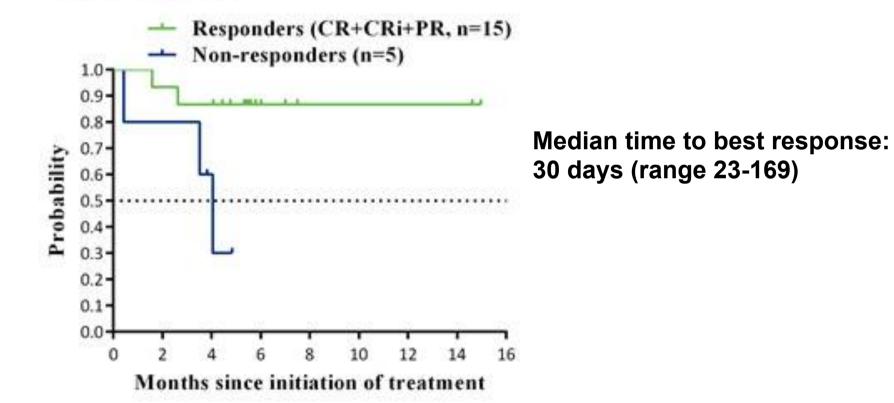
Promising targets: Bcl2 inhibition

- VEN is an oral (PO), potent, and selective BCL-2 inhibitor that demonstrated single-agent activity in heavily pretreated patients with relapsed/refractory AML¹
- Binding of VEN to BCL-2 displaces a reserve of sequestered proapoptotic proteins in cancer cells, resulting in rapid cell death and antitumoral activity²⁻⁵

Venetoclax in combination with LDAC

Bcl2 inhibitor

 A Phase 1/2 Study of ABT-199 in Combination with Low-Dose Cytarabine in Treatment-Naïve Subjects with Acute Myelogenous Leukemia Who Are
 ≥ 65 Years of Age and Who Are Not Eligible for
 Standard Anthracycline-Based Induction Therapy


MCL1 inhibitor

8 Sites: USA (5) Australia (1) Italy (1) Germany (1)

Lin TL, et al. ASCO 2016. Abstract 7007.

Efficacy

Figure 1. Overall survival in responders vs. non-responders

Wei A et al, ASH 2016

Conclusions and open questions

- Consolidation and post remission treatment are defined according to genetics risk stratification, patients-related factors and MRD monitoring
- Grey zone: intermediate risk AML
- Maintenance setting: after alloBMT
- In the elderly setting: New compounds in clinical development; immunotherapy

-A lot to learn about biology of AML (driver mutations vs passenger mutations; mechanisms of resistance)
-New drugs: definition of their role
-Treat patients within clinical trials

Thank you!

Prof Giovanni Martinelli

Clinical Acute Leukemia Team

Stefania Paolini, Antonio Curti, Maria Chiara Abbenante, Chiara Sartor, Sarah Parisi, Giovanni Marconi, Silvia Lo Monaco, Luca Bertamini, Jacopo Nanni, Annalisa Talami, Matteo Olivo, Simone Ragaini, Stefano de Polo **BMT Team** Francesca Bonifazi, Mario Arpinati, Maria Rosaria Sessa

Molecular Biology Lab

Maria Chiara Fontana, Simona Soverini, Anna Ferrari, Claudia Venturi, Emanuela Ottaviani, Giorgia Simonetti, Antonella Padella, Margherita Perricone, Valentina Robustelli, Maria Teresa Bochicchio, Andrea Ghelli Luserna di Rorà, Luana Bavaro, Enrica Imbrogno, Carolina Terragna, Eugenio Fonzi, Giovanni Pasquini, Samantha Bruno

Data Managers Cinzia Bonajuto, Claudia Lilli, Fabiana Mammoli Project Managers Federica frabetti, Elena Tenti Cytogenetics Nicoletta Testoni, Carmen Baldazzi