
Survival estimates of matched MM patients and controls

Fonseca R, Leukemia 2017

Current IMWG Criteria for Diagnosis of Multiple Myeloma

MGUS

- M protein < 3 g/dL
- Clonal plasma cells in BM < 10%
- No myeloma-defining events

Smoldering Myeloma

- M protein ≥ 3 g/dL (serum) or
 ≥ 500 mg/24 hrs (urine)
- Clonal plasma cells in BM ≥ 10% to 60%
- No myeloma-defining events
- Underlying plasma cell proliferative disorder
- AND 1 or more myelomadefining events:
- ≥ 1 CRAB* feature
- Clonal plasma cells in BM ≥ 60%
- Serum free light chain ratio
 ≥ 100
- > 1 MRI focal lesion

- *C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN)
- R: Renal insufficiency (creatinine clearance < 40 mL/min or serum creatinine > 2 mg/dL)
- A: Anemia (Hb < 10 g/dL or 2 g/dL < normal)
- B: Bone disease (≥ 1 lytic lesions on skeletal radiography, CT, or PET/CT)

Rajkumar SV, et al. Lancet Oncol. 2014;15:e538-e548.

Smoldering Myeloma: High-Risk Criteria

Mayo Clinic (n = 273)

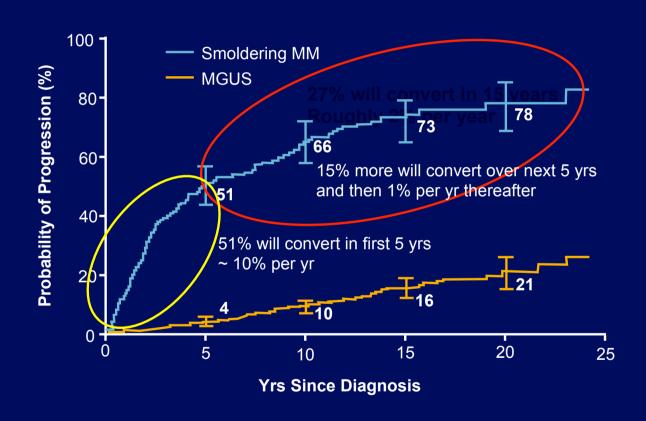
PETHEMA Study Group (n = 89)

Risk Factors, n	Patients, n (%)	Progression at 5 Yrs, %
1	81 (28)	25
2	114 (42)	51
3	78 (30)	76

Risk Factors, n	Patients, n (%)	Progression at 5 Yrs, %
0	28 (31)	4
1	22 (25)	46
2	39 (44)	72

Risk Factors

- Mayo Clinic^[1]
- PETHEMA^[2]
- University of Salamanca^[3]


- BMPCs ≥ 10%
- ≥ 95% abnormal plasma cells
- BMPCs ≥ 10%

M-protein ≥ 3 g/dL

- Immunoparesis
- High M-protein: IgG ≥ 3 g/ dL, IgA ≥ 2 g/dL, or Bence-Jones > 1 g/24 hrs
- 1. Dispenzieri A, et al. Blood. 2008;111:785-789. 2. Pérez-Persona E, et al. Blood. 2007;110:2586-2592.
- 3. Mateos MV, et al. N Engl J Med. 2013;369:438-437.

FLC ratio < 0.125 or > 8

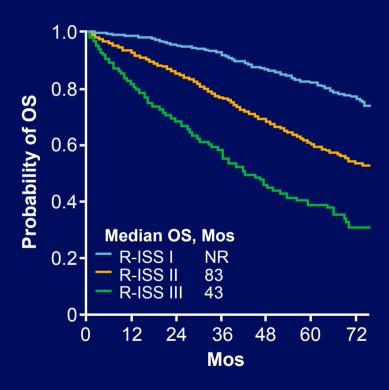
Progression to Symptomatic MM

Smoldering Myeloma: How to manage

- Current recommendations: Observe or enroll in trial
 - IMWG: If no evidence of end-organ damage, continue with observation (ie, do not treat early)^[1]
 - NCCN: Initially observe at 3- to 6-mo intervals or enroll in clinical trial^[2]
- Key: Carefully evaluate patients on a regular basis for evidence of evolving organ damage
 - Strongly consider more sensitive imaging (eg, MRI, PET) in patients with negative disease on plain film
- Evolving data suggest benefit to treating high-risk patients

^{1.} Kyle RA, et al. Leukemia. 2010;24:1121-1127. 2. NCCN. Clinical practice guidelines in oncology: multiple myeloma. v.1.2014.

Newly Diagnosed MM: Why Risk Stratify?


2 important goals

- Counsel: Need to provide pt with realistic expectations of prognosis based on currently available treatments
- Therapy: Choose specific therapies based on their differential effects on high-risk vs standard-risk disease

Chng WJ, et al. Leukemia. 2014;28:269-277.

Revised ISS Staging System

	ISS Definition
ı	 Serum albumin ≥ 3.5 g/dL AND β₂-M < 3.5 mg/L
П	Not stage I or III
Ш	■ β ₂ -M ≥ 5.5 mg/dL
	R-ISS Definition
ı	 ISS stage I AND Normal LDH No t(4;14), t(14;16), or del(17p)
Ш	Not stage I or III
Ш	 ISS stage III AND Serum LDH > ULN OR With t(4;14), t(14;16), or del(17p)

Palumbo A, et al. J Clin Oncol. 2015;33:2863-2869.

mSMART: Classification of Active MM

High Risk

- FISH[‡]
 - del(17p)
 - t(14;16)
 - t(14;20)
- GEP
 - High-risk signature

Intermediate Risk*

- FISH
 - t(4;14)§
 - 1q gain
- Cytogenetic del 13 or hypodiploidy
- High PC S-phase[¶]

Standard Risk*†

All others including:

- Trisomies
- t(11;14)^{||}
- **t**(6;14)

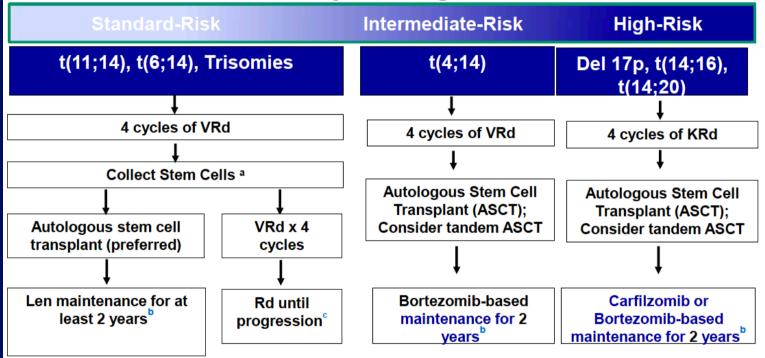
Dispenzieri A, et al. Mayo Clin Proc. 2007;82:323-341. Kumar SK, et al. Mayo Clin Proc. 2009;84:1095-1110. Mikhael JR, et al. Mayo Clin Proc. 2013;88:360-376.

^{*}A subset will be classified as high-risk by GEP.

[†]LDH > ULN and β_2 -M > 5.5 mg/L may indicate worse prognosis.

[‡]Trisomies may ameliorate.

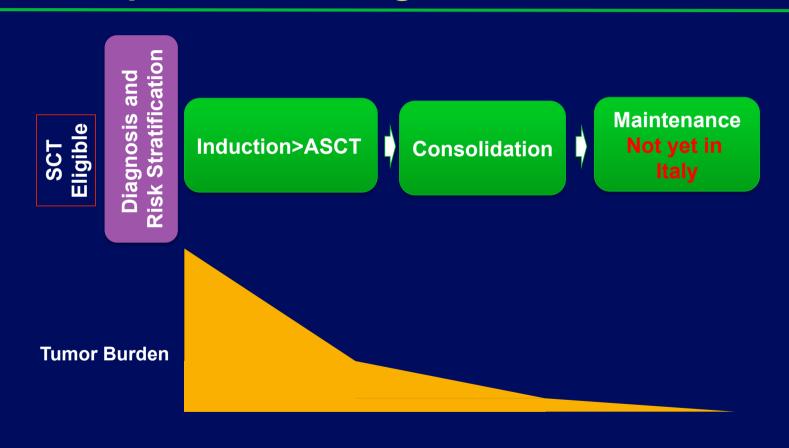
[§]Prognosis is worse when associated with high β_2 -M and anemia.


[&]quot;t(11;14) may be associated with plasma cell leukemia.

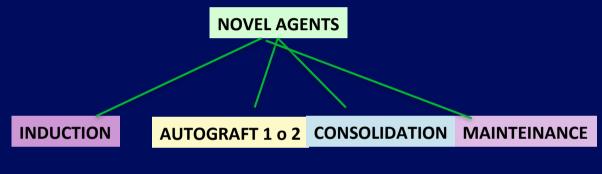
[¶]Cutoffs vary.

mSMART - Off-Study

Transplant Eligible


^a If age >65 or > 4 cycles of VRd, consider mobilization with G-CSF plus cytoxan or plerixafor

Dispenzieri et al. Mayo Clin Proc 2007;82:323-341; Kumar et al. Mayo Clin Proc 2009 84:1095-1110; Mikhael et al. Mayo Clin Proc 2013;88:360-376. v14 //last reviewed July 2016


^b Duration based on tolerance; consider risks and benefits for treatment beyond 2 years

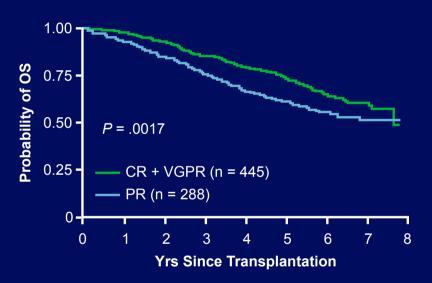
c Continuing Rd for patients responding to Rd and with low toxicities

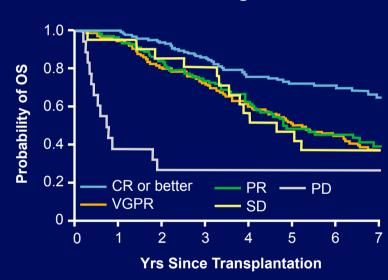
Myeloma Treatment Paradigm for pts who are eligible for ASCT

New treatment paradigm for patients who are eligible for ASCT

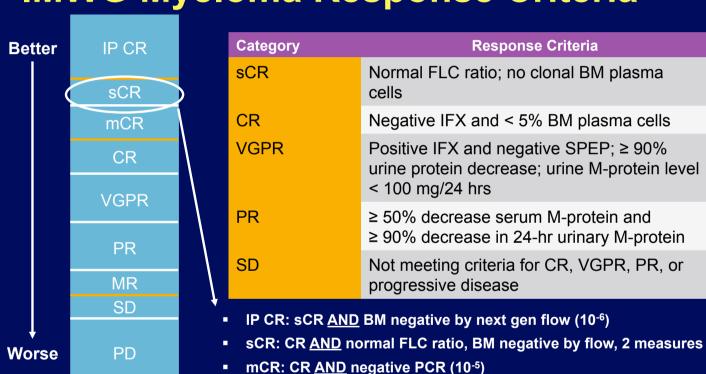
3-drugs bort-based regimens

- Maximize the depth of response
- Minimize the burden of residual tumor cells


intensification induction


Cavo Blood 2011

Achieving ≥ VGPR or CR Should Be the Goal of Therapy


Achieving CR^[2]

 Significantly better 5-yr OS in pts with sCR (80%) vs CR (53%) or nCR (47%) (P < .001)

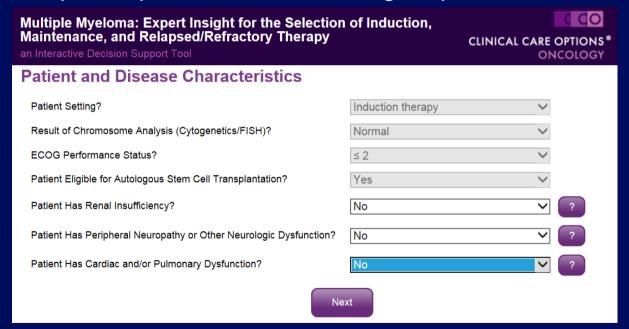
- 1. Harousseau JL, et al. J Clin Oncol. 2009;27:5720-5726.
- 2. Kapoor P, et al. J Clin Oncol. 2013;31:4529-4535.

Monitoring Disease is Essential: IMWG Myeloma Response Criteria

OD AND THE STATE OF THE STATE O

CR: negative IFX; < 5% PC in BM; 2 measures

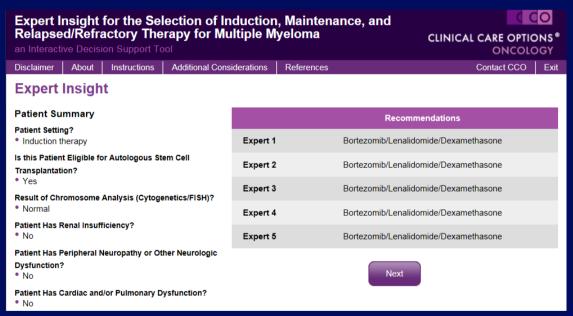
Depth of Response and Survival: MRD Surpasses CR


Induction and Maintenance Therapy for Transplantation-Eligible Pts With MM

	NCCN Preferred Regimens	Other NCCN Regimens
Initial therapy (induction) for transplantation-eligible pts (response assessment after cycle 2)	Category 1 Bort/dox/dex Rd RVd VD VTD Category 2A CyBorD	Category 2A IRd KRd Category 2B Dexamethasone Liposomal dox/vin/dex Thal/dex
Maintenance therapy	Category 1 Lenalidomide Thalidomide Category 2A Bortezomib	Category 2B VP VT Interferon Steroids Thal + pred

NCCN. Clinical practice guidelines in oncology: multiple myeloma. v. 3.2016.

Online Treatment Decision Aid for MM


- Developed by 5 MM experts based on key factors to guide therapy
- Users enter specific pt characteristics using dropdown menus

Available at: clinicaloptions.com/MyelomaTool

Case Entry Example: Expert Recommendations

 A 64-yr-old man diagnosed with MM; FISH testing revealed t(11;14) and monosomy 13; ECOG PS 0

Note: Pt preference and context should always be considered in final treatment decisions

Available at: clinicaloptions.com/MyelomaTool

SWOG S0777: Study Design

Randomized phase III trial of VRd vs Rd

Previously untreated active myeloma (using CRAB criteria) with measurable disease (by FLC assessment) and CrCl > 30 mL/min (N = 525)

Lenalidomide 25 mg/day PO Days 1-21 +
Dexamethasone 40 mg/day PO Days 1, 8, 15, 22
for six 28-day cycles
(eligible n = 230)

Bortezomib 1.3 mg/m² IV Days 1, 4, 8, 11 + Lenalidomide 25 mg/day PO Days 1-14 + Dexamethasone 20 mg/day PO Days 1, 2, 4, 5, 8, 9, 11,12 for eight 21-day cycles (eligible n = 242)

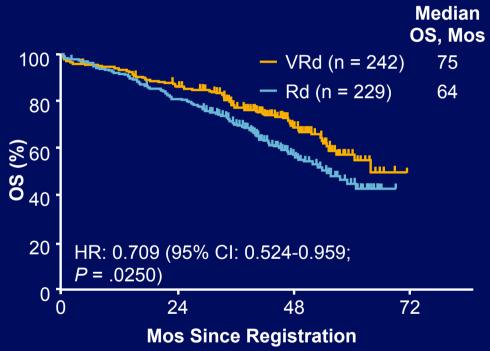

Rd maintenance until PD, unacceptable AE, or withdrawal of consent

All pts received aspirin 325 mg/day; pts in bortezomib arm received HSV prophylaxis.

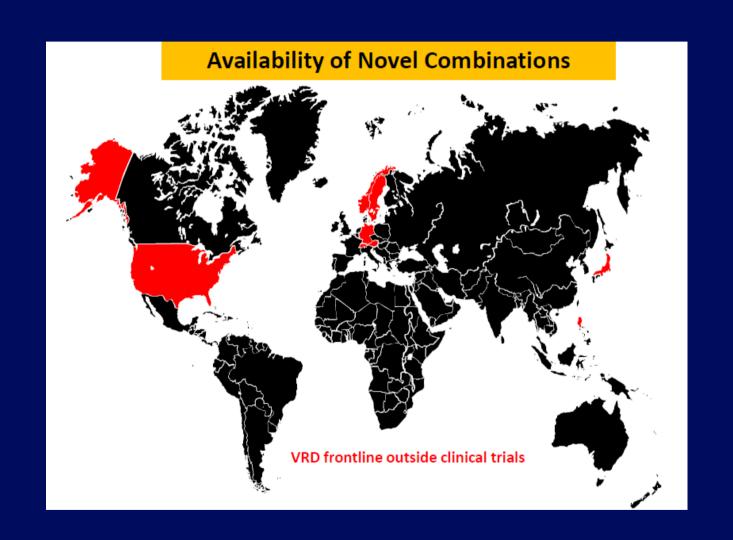
- Primary endpoint: PFS
- Secondary endpoints: ORR, OS, safety

Durie BG, et al. Lancet. 2017;389:519-527.

SWOG S0777: Confirmed Response



*Assessable.

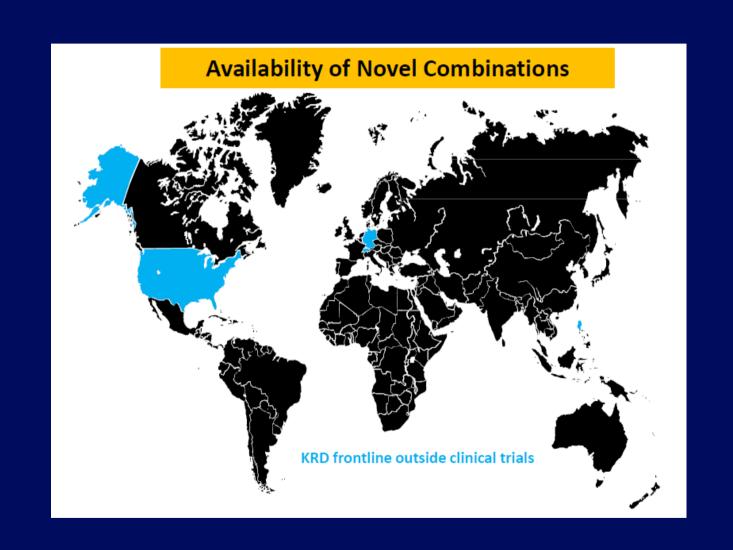

Durie B, et al. ASH 2015. Abstract 25.

SWOG S0777: PFS, OS

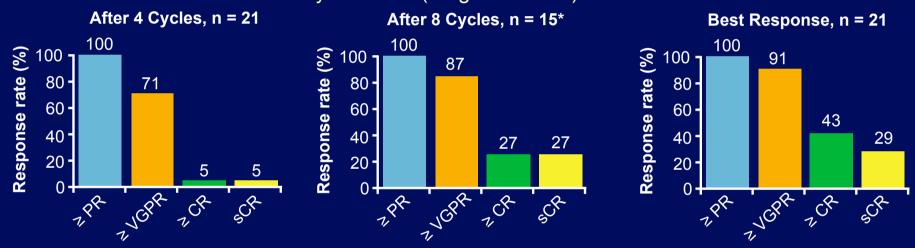


Durie B, et al. Lancet. 2017;389:519-527.

Earlier Phase Studies: Induction Regimens for Transplantation-Eligible Pts


Regimen	Median Total Cycles, n	Survival, %
VRd ^[1]	10*	18-mo PFS: 75 18-mo OS: 97
KRd ^[2,3]	12	12-mo PFS: 97 2-yr PFS: 92 3-yr PFS: 79 3-yr OS: 96
CyBorD ^[4]	4 †	5-yr PFS: 42 5-yr OS: 70
IRd ^[5]	7	12-mo PFS: 88 12-mo OS: 94

1. Richardson PG, et al. Blood. 2010;116:679-686. 2. Jakubowiak AJ, et al. Blood. 2012;120:1801-1809. 3. Jasielec J, et al. ASH 2013. Abstract 3220. 4. Reeder CB, et al. Br J Haematol. 2014;167: 563-565. 5. Kumar SK, et al. Lancet Oncol. 2014;15:1503-1512.


^{*}Induction and maintenance; any drug

[†]Median NR; response after 4 cycles was primary study goal.

Daratumumab + KRd in Newly Diagnosed MM: Response

■ Median number of treatment cycles: 11.5 (range: 1.0-13.0)

Depth of response improved with duration of treatment

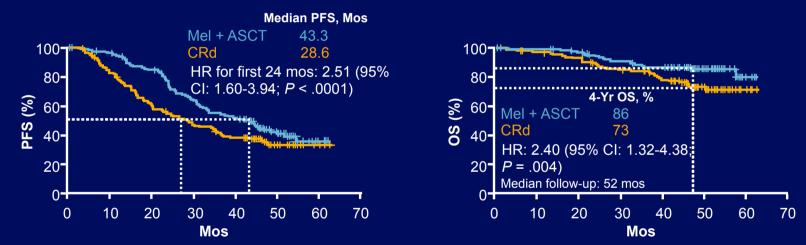
*5 pts who proceeded to ASCT before cycle 8 and 1 pt who discontinued due to PD at cycle 7 were excluded.

- Median follow-up: 10.8 mos (range: 4.0-12.5)
- OS: 100% at follow-up

Jakubowiak AJ, et al. ASCO 2017. Abstract 8000.

MMY1001: Phase 1b study of Dara + KRd PFS and os

- 12-month PFS rate was 94%^a
- With a median follow-up of 10.8 mos, OS was 100%


DARA, daratumumab; KRd, carfilzomib, lenalidomide, and dexamethasone; OS, overall survival; PFS, progression-free survival; pt, patient. Jakubowiak AJ, et al. Daratumumab in Combination With Carfilzomib, Lenalidomide, and Dexamethasone in Patients With Newly Diagnosed Multiple Myeloma (MMY1001): An Open-Label, Phase 1b Study. ASCO 2017, abstract #8000.

a Kaplan-Meier estimate.

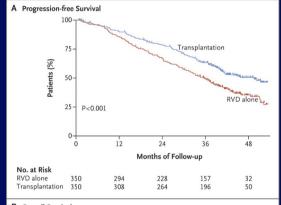
Autologous Stem Cell Transplantation

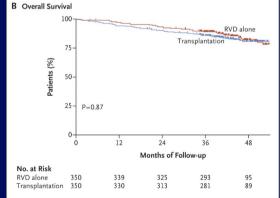
Phase III Trial: Rd Induction and MeI + ASCT vs Cyclophosphamide + Rd Consolidation

 Randomized, controlled phase III trial comparing high-dose mel + ASCT (n = 127) vs CRd (n = 129) consolidation in newly diagnosed MM

■ Increased grade 3/4 AEs with mel + ASCT vs CRd, but similar serious hematologic (0% vs 2%) and nonhematologic (7% vs 10%) AEs

Phase III IFM/DFCI 2009: Frontline VRd ± ASCT in Younger Pts With MM

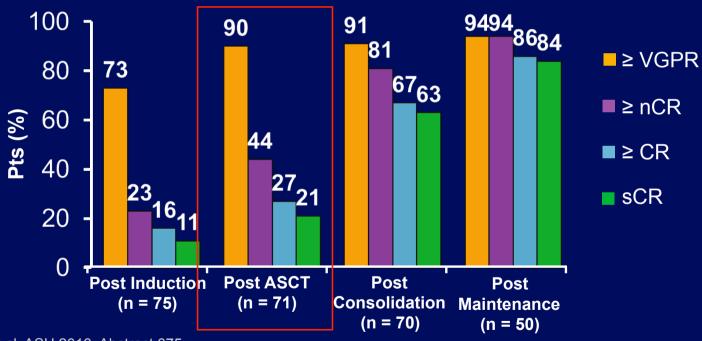

Previously untreated pts ≤ 65 yrs of age (N = 700)


Outcome	VRd + ASCT (n = 350)	VRd Only (n = 350)	HR (95% CI)	P Value
Median PFS, mos	50	36	0.65 (0.53-0.80)	< .001
4-yr OS, %	81	82	1.16 (0.80-1.680	.87
≥ 1 SPM, %	7	6		
ORR, %	98	97		
≥ VGPR, %	88	77		.001

■ PFS benefit in ASCT arm uniform across subgroups: age (< 60 or 60-65 yrs), sex, isotype (IgG or IgA or light chain), ISS stage (I or II or III), cytogenetics (standard or high risk)

Attal M, et al. N Engl J Med. 2017;376:1311-1320.

Kaplan–Meier Curves for Progression-free Survival and Overall Survival.



Phase II MMRC Trial: Extended KRd Therapy + ASCT in Pts With Newly Diagnosed Myeloma

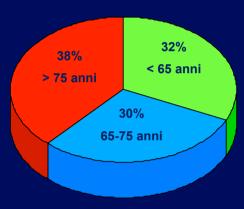
4 cycles of KRd induction + ASCT, 4 cycles of KRd consolidation,
 10 cycles of KRd maintenance

Zimmerman T, et al. ASH 2016. Abstract 675.

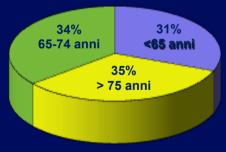
Current Considerations for Initial Treatment of MM in Younger Pts

- 3-drug induction followed by autologous transplantation^[1]
- Maintenance therapy post autologous transplantation^[2]
- Maximize duration of first response^[3,4]
- Assessing depth of response and understanding implications for pt outcome^[5]

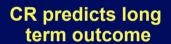
1. Cavo M, et al. Lancet. 2010;376:2075-2085. 2. McCarthy PL, et al. Expert Rev Hematol. 2014;7:55-66. 3. Palumbo A, et al. N Engl J Med. 2011;364:1046-1060. 4. Lenhers N, et al. ASH 2013. Abstract 3183. 5. Paiva B, et al. Blood. 2012;119:687-691.

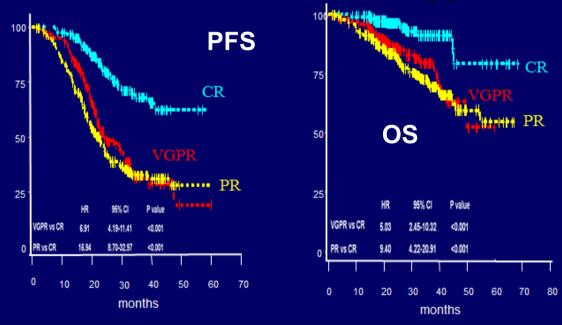

MM: Epidemiologia

INCIDENZA: 8.9/100.000


Regione Piemonte 2006

INCIDENZA: 7.3/100.000

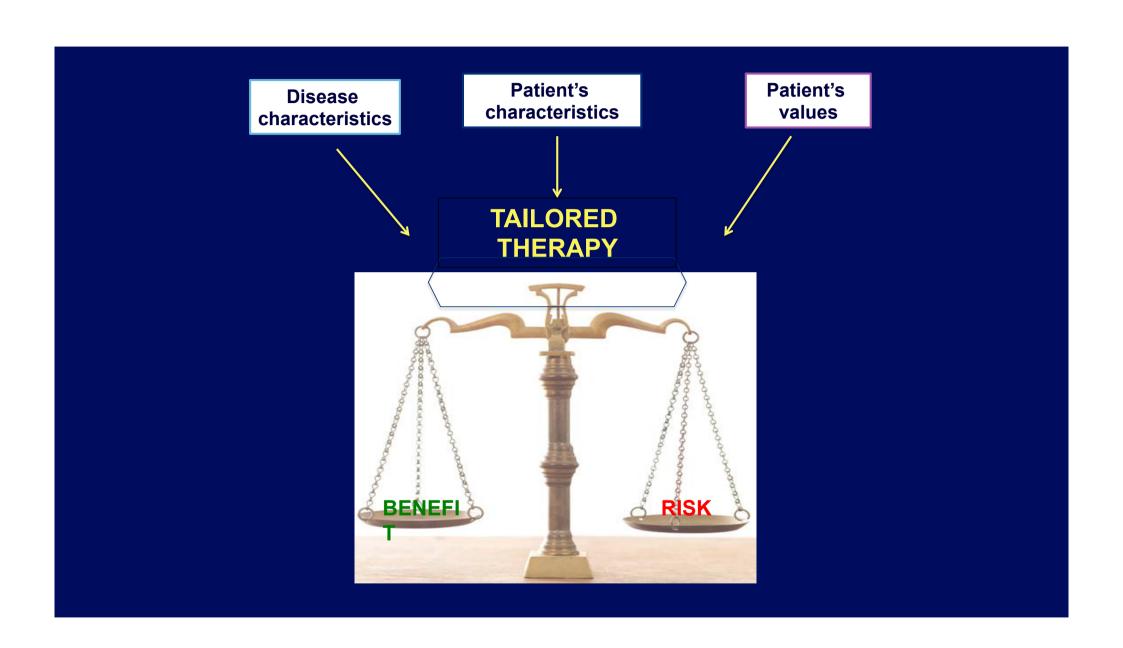

Registro Marchigiano MM 2010


INCIDENZA (nord-centro-sud: 6.1-5-4.3/100.000

AIRTHM - 2014

Impact of CR in elderly patients

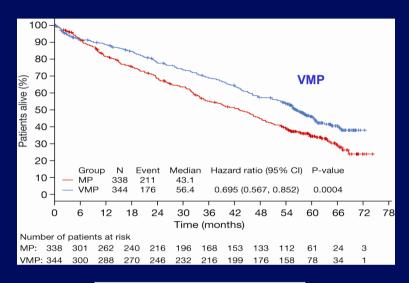
Trattamento del paziente > 65 anni


Eleggibilità a un trattamento intensivo?

Sì No

Età: 65-70 o se FIT anche oltre Circa il 30% dei pazienti osservati

Induzione con tripletta (VTD) per 4 cicli Trattamento intensivo con Melphalan 200 mg/m² ed autotrapianto Trattamento di mantenimento con lenalidomide Età > 70 Fra il 45 e il 50% dei pazienti osservati


MVP, Rd

The risks in treating older patients

- Undertreatment: making choice based on chronological age only
- •Overtreatment: making choice considering only response
- •Mistreatment: making choice non evidence based and non preference based

Overall Survival VMP-MPT

-							- trt = MP - trt = MP1
0.8	***************************************	in the second	-			IPT	
rtion (´ ()S 3 a	nni <60%	6
survival proportion 0.4 0.6				100			
4alp				`			
o O						Market State of the State of th	··•·
0.2	-						
0.0							
O	0	12	24	months	36	48	60
Number at risk			466		266	122	45

Figure 1. Overall survival: all patients, by treatment. Cox model for treatment, with analysis stratified by study using a random effects (frailty) model: HR=0.83 (95% CT 0.73–0.94 in favour of MPT, p=0.004. Median survival MP 32.7 months (95%CT 30.5–36.6), MPT 39.3 (35.6–44.6)

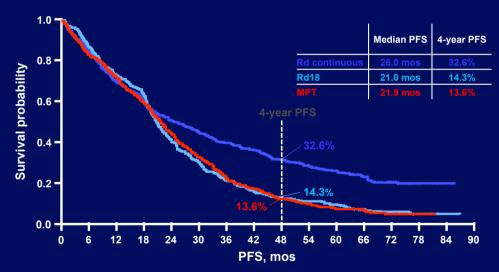
OS mediana			
VMP	56.4 m		
MP	43.1 m		

OS mediana

MPT 39.3 m

MP 32.7 m

VMP vs MP: 13.3 mesi di beneficio clinico 31% riduzione del rischio di morte MPT vs MP: 6.6 mesi di beneficio clinico 17% riduzione del rischio di morte


San Miguel et al. ASH 2011 (Abstract 476), oral presentation

FIRST trial: Final PFS

Median follow-up: 67 months

Updated PFS was prolonged with Rd continuous^a

Results remain consistent nearly 3 years after the original PFS analysis

HR (95% CI) Rd continuous vs. MPT: 0.69 (0.59–0.79), *P* <0.00001

HR (95% CI) Rd continuous vs MPT: 0.69 (0.59–0.79), *P* < 0.00001

IMPACT OF DEPTH OF RESPONSE ON OUTCOMES

Rd continuous in FIRST (MM-020)*1,2			VMP in VISTA*1,2		
≥VGPR	48.2%	≥VGPR	41%		
DoR	≥VGPR patients: 49.0 months CR: 59.1 months PR: 31.5 months	DoR	CR: 24.0 months PR: 19.9 months		
TTNT	CR/VGPR: 69.5 months PR: 49.1 months	TTNT	CR: 37.8 months for VMP PR: 25.2 months		

1. Bahlis NJ, et al. Leukemia 2017; Epub ahead of print; 2. Facon T, et al. Presented at ASH 2016 (Abstract 241).

1. San Miguel JF, et al. N Engl J Med 2008;359:906-17; 2. Harousseau J-L, et al. Blood 2010;116:3743-50.

FIRST Trial: Response¹

Pts with high-quality response (ie, ≥ VGPR) as best response tended to have faster times to first response across all Tx arms

Median TTR (range), mos ^a	ALL	CR (n = 289)	≥ VGPR (n = 678)	≥ PR (n = 1223)
Rd continuous	1,8	1.0 (0.7-4.7)	1.1 (0.5-8.6)	1.8 (0.5-22.2)
Rd18	1,8	1.0 (0.8-34.8)	1.0 (0.8-34.8)	1.8 (0.8-34.8)
MPT	2,8	1.5 (1.4-9.9)	1.6 (1.3-26.8)	2.8 (1.2-49.7)
VMP (VISTA)	1,4	-	-	-

^a Pts with response date before randomization date due to data issue were not included. CR, complete response; MPT, melphalan, prednisone, and thalidomide; PR, partial response; pt, patient; Rd continuous, lenalidomide plus low-dose dexamethasone until disease progression; Rd18, lenalidomide and low-dose dexamethasone for 18 cycles; TTR, time to response; VGPR, very good partial response. Bahlis NJ, et al. *Leukemia*. 2017 Apr 28

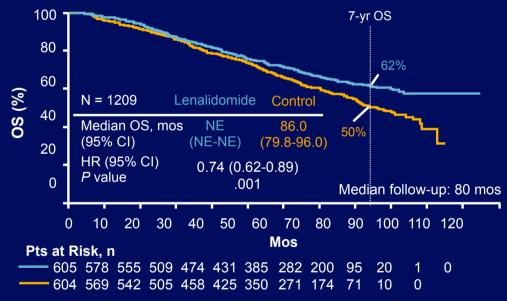
1Line Trials NoASCT - Summary

Trial	No. Cycles	Time of treatment (months)	CR	ORR	mPFS
VMP VISTA	8 bw + 5 ow	9,5	30%	70%	21.7m
VMP Gimema	9 ow	9	30%	85%	24.8m
RD	Until Progression	18,4	20%	81%	26m
RD18	18	16,6	14%	73%	21m
MPT	18	15,4	9%	62%	21.9m

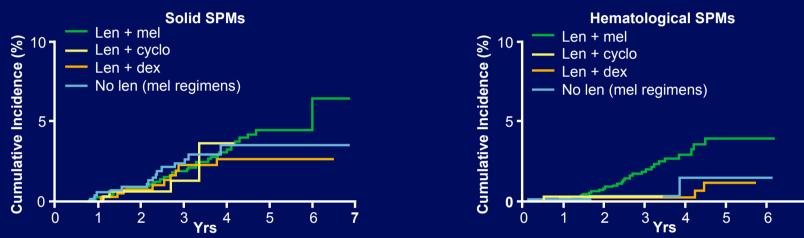
La scelta dell'induzione

VMP

- •Prima scelta se IR
- Prec TVP o sd trombofilica
- •Terapia di durata fissa
- •Maggiore possibilità di scelta alla recidiva
- •Migliore aderenza al trattamento se pazienti very very old
- •Citoriduzione rapida?
- •Alti rischi?


Rd

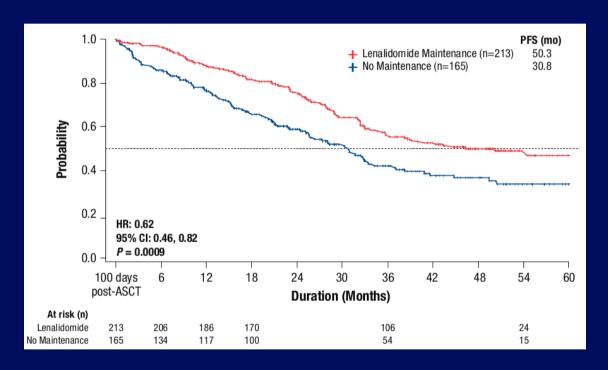
- •PNP
- Logistica (caregiver)
- Terapia orale
- •Terapia continuativa
- Meno recidive
- •Maggiore probabilità di controllo a lungo termine in particolare nei responsivi
- Meno accessi in ospedale


Meta-analysis of 3 Phase III Trials: OS With Len Maintenance After High-Dose Melphalan + ASCT

26% reduction in risk of death; estimated 2.5-yr increase in median OS

 In February 2017, FDA approved lenalidomide as maintenance therapy for patients with myeloma following ASCT

Cumulative Incidence of Second Primary Malignancies by Treatment



Cumulative Incidence, %	Solid SPMs		Hematologic SPMs		
	3 Yrs	5 Yrs	3 Yrs	5 Yrs	
Len + mel	2.7	4.4	1.8	3.9	
Len + cyclo	3.5	NE	0.3	NE	
Len + dex	2.2	2.6	0.3	1.3	
No len	2.9	3.4	0.4	1.4	

Palumbo A, et al. Lancet Oncol. 2014;15:333-342.

Connect MM: IMPACT OF post-ASCT Maintenance Tx PFS

- PFS was significantly longer in patients treated with lenalidomide maintenance vs no maintenance
 - 3-year PFS rate, 56% with lenalidomide maintenance vs 42% with no maintenance
 - Median PFS in patients with lenalidomide-only maintenance (n = 188) was 54.5 months

ASCT, autologous stem cell transplant; HR, hazard ratio; MM, multiple myeloma; PFS, progression-free survival; Tx, therapy.

Jagannath S, et al. Impact of Post-Autologous Stem Cell Transplant (ASCT) Maintenance Therapy on Outcomes in Patients (Pts) With Newly Diagnosed Multiple Myeloma (NDMM) Using the Large Prospective Community-Based Connect® MM Registry. ASCO 2017, abstract #8040.

Maintenance in Myeloma

- PFS advantage^[1-3]
- OS improvements?^[2]
- Toxicities of treatment
 - Myelosuppression^[3]
 - Second primary malignancies^[3,4]
 - Quality of life?^[5]

 Which pts benefit from maintenance, which agent(s) to use, duration of therapy still unclear^[6]

^{1.} Attal M, et al. ASH 2013. Abstract 406. 2. McCarthy PL, et al. N Engl J Med. 2012;366:1770-1781.

^{3.} Attal M, et al. N Engl J Med. 2012;366:1782-1791. 4. Palumbo A, et al. Lancet Oncol. 2014;15:333-342.

^{5.} Abonour R, et al. ASH 2016. Abstract 537. 6. Lipe B, et al. Blood Cancer J. 2016;6:e485.

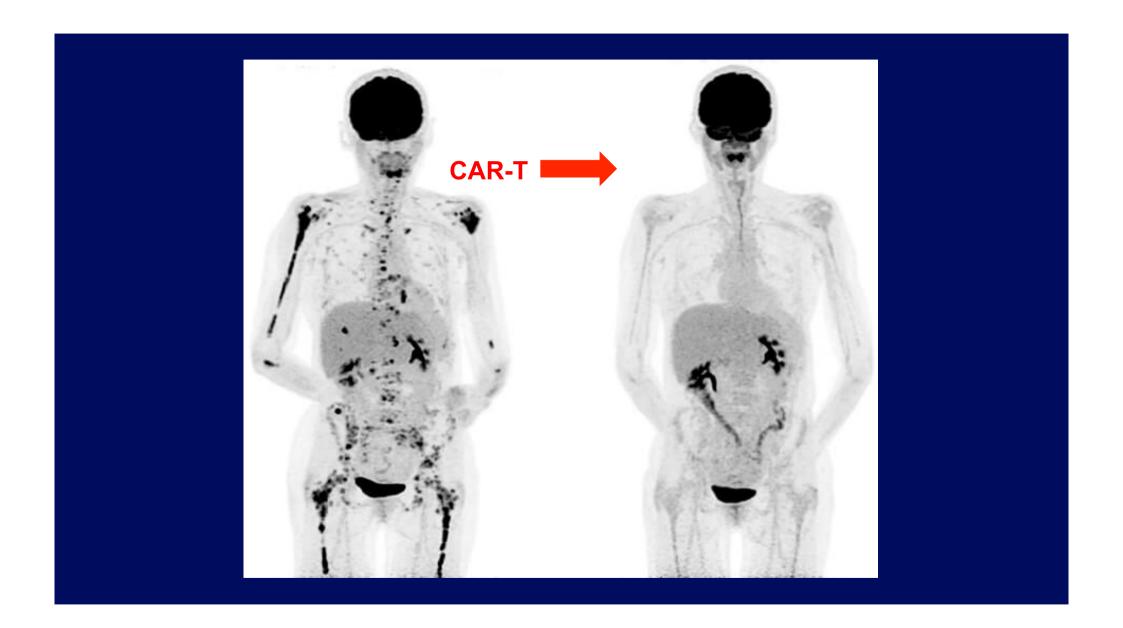
Allogeneic SCT

- Graft-vs-myeloma effect
- Can potentially provide sustained disease control (ie, cure)
- High treatment-related mortality
- Morbidity from GVHD
- No definite OS advantage vs autologous SCT
- Should be offered to high-risk pts in trials


Dhakal B, et al. Bone Marrow Transplant. 2016;51:492-500.

SPECIAL REPORT

Impact of drug development on the use of stem cell transplantation: a report by the European Society for Blood and Marrow Transplantation (EBMT)


JR Passweg¹, H Baldomero¹, P Bader², C Bonini³, S Cesaro⁴, P Dreger², BF Duarte⁶, C Dufour⁷, J Kuball⁸, D Farge-Bancel⁹, A Gennery¹⁰, R Kröger¹¹, F Lanza¹², A Nagler¹³, A Sureda¹⁴ and M Mohty¹⁵ for the European Society for Blood and Marrow Transplantation (EBMT)

Bone Marrow Transplantation (2016), 1–6

CAR-BCMA T Cells in Myeloma: Response

Pt	Myeloma Type	CAR-BCMA dose (T cells/kg)	Response	Response Duration, weeks
1	κ light chain only	0.3×10^6	PR	2
2	IgA λ	0.3×10^6	SD	6
3	κ light chain only	0.3 x 10 ⁶	SD	6
4	κ light chain only	1 x 10 ⁶	SD	12
5	lgG κ	1 x 10 ⁶	SD	4
6	IgG λ	1 x 10 ⁶	SD	2
7	lgG λ	3 x 10 ⁶	SD	7
8	κ light chain only	3 x 10 ⁶	VGPR	8
9	κ light chain only	3 x 10 ⁶	SD	16
10	IgA λ	9 x 10 ⁶	sCR	12+
11	IgG λ	9 x 10 ⁶	PR	6+
12	lgA λ	3 x 10 ⁶	SD	2

Conclusions: Myeloma Treatment

- In general, deeper responses translate to longer response duration
- Treat to maximum response, balancing toxicity
- Duration of therapy not clear, but "drug holidays" help with toxicity, quality of life

Future of Myeloma Therapy

- New drugs with different mechanisms of action
- Heterogeneous disease: have to match the mechanism with the biologic abnormality
- Combination regimens may provide possible cure
 - For example, agent generally effective against myeloma with targeted agent for specific subtype
- Effective combinations have to move to upfront setting
- Early intervention may be the key for cure