Immunoterapia nel Mieloma Multiplo e nel Linfoma di Hodgkin

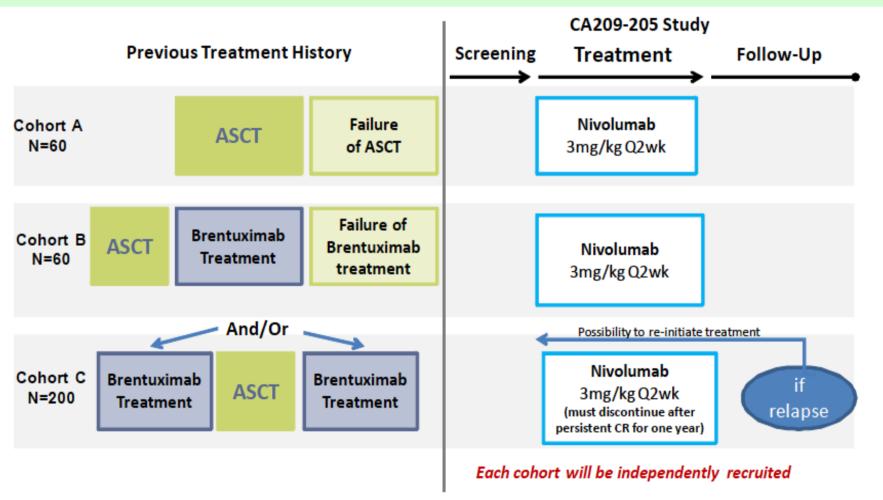
MILANO
9 Novembre 2017

LINFOMA DI HODGKIN: RUOLO DEI CHECKPOINT INHIBITORS Armando Santoro

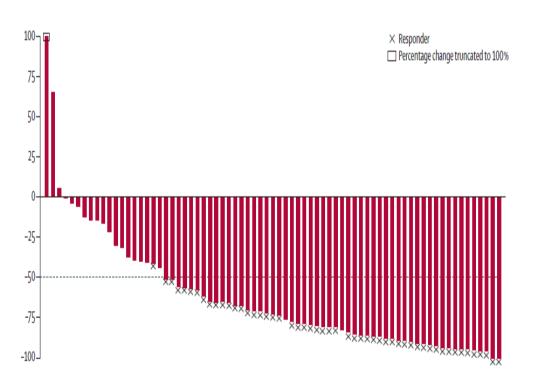
CANCER IMMUNOTHERAPY TODAY

TUMORS RESPONSIVE TO ANTI-PD1 OR ANTI-PD-L1 THERAPY

- MELANOMA
- **RCC**
- **NSCLC**
- UROTHELIAL CANCER
- HEAD AND NECK CANCER
- ► MERKEL CELL CARCINOMA
- **MSI**



CHECKMATE-205: PHASE 2 STUDY WITH NIVOLUMAB IN R/R HL


Study Design

CHECKMATE 205: PHASE II STUDY IN cHL- Cohort B

Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial

Anas Younes, Armando Santoro, Margaret Shipp, Pier Luigi Zinzani, John M Timmerman, Stephen Ansell, Philippe Armand, Michelle Fanale, Voravit Ratanatharathorn, John Kuruvilla, Jonathon B Cohen, Graham Collins, Kerry J Savage, Marek Trneny, Kazunobu Kato, Benedetto Farsaci, Susan M Parker, Scott Rodig, Margaretha G M Roemer, Azra H Ligon, Andreas Engert

COHORT B

NIVO IN

ASCT+BV

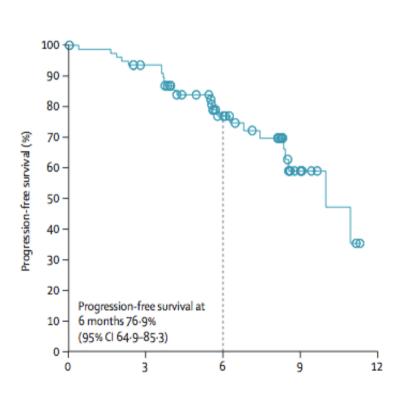
(60 PTS)

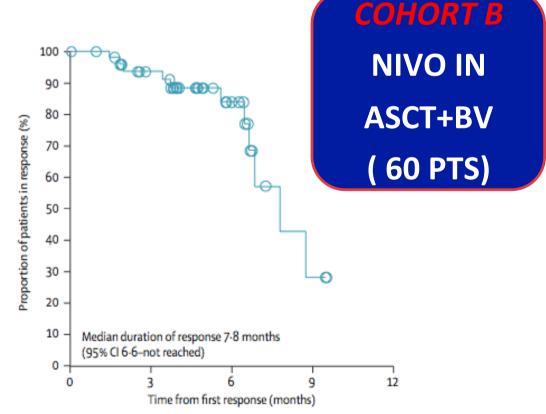
EFFICACY

OBJECTIVE RESPONSE: 66.3%,

CR 9%,

PR 58%


MEDIAN DOR: 7.8 MS


Lancet Oncol 2016; 17: 1283-94

CHECKMATE 205: PHASE II STUDY IN cHL- Cohort B

Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial

Anas Younes, Armando Santoro, Margaret Shipp, Pier Luigi Zinzani, John M Timmerman, Stephen Ansell, Philippe Armand, Michelle Fanale, Voravit Ratanatharathorn, John Kuruvilla, Jonathon B Cohen, Graham Collins, Kerry J Savage, Marek Trneny, Kazunobu Kato, Benedetto Farsaci, Susan M Parker, Scott Rodia, Margaretha G M Roemer, Azra H Ligon, Andreas Engert

Nivolumab for Relapsed/Refractory Classical Hodgkin Lymphoma After Autologous Transplant: Full Results After Extended Follow-Up of the Phase 2 CheckMate 205 Trial

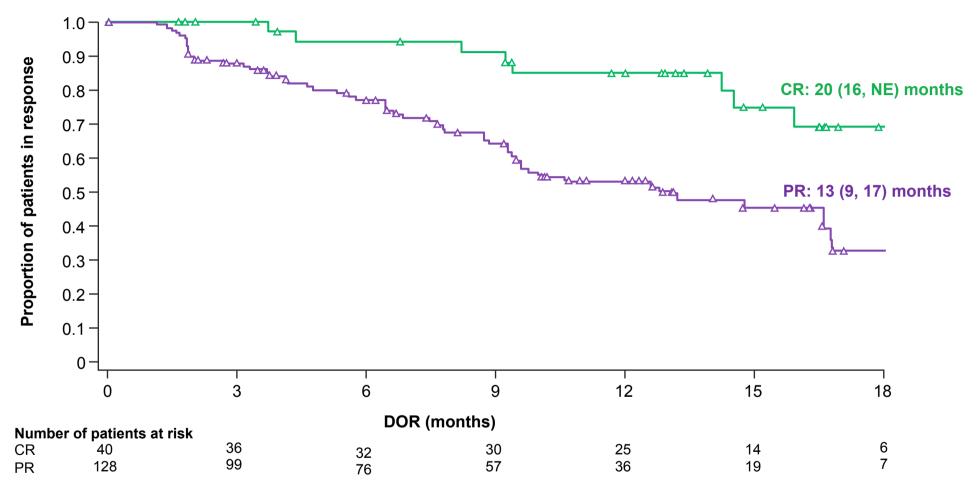

Michelle Fanale,¹ Andreas Engert,² Anas Younes,³ Philippe Armand,⁴ Stephen Ansell,⁵ Pier Luigi Zinzani,⁶ John M Timmerman,⁷ Graham P Collins,⁸ Radhakrishnan Ramchandren,⁹ Jonathon B Cohen,¹⁰ Jan Paul De Boer,¹¹ John Kuruvilla,¹² Kerry J Savage,¹³ Marek Trneny,¹⁴ Scott Rodig,¹⁵ Margaret Shipp,⁴ Kazunobu Kato,¹⁶ Anne Sumbul,¹⁶ Benedetto Farsaci,¹⁶ Armando Santoro¹⁷

¹University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²University Hospital of Cologne, Cologne, Germany;
 ³Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴Dana-Farber Cancer Institute, Boston, MA, USA; ⁵Mayo Clinic, Rochester, MN, USA; ⁶Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy; ⁷University of California, Los Angeles, CA, USA; ⁸Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford, UK; ⁹Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA; ¹⁰Winship Cancer Institute, Emory University, Atlanta, GA, USA; ¹¹Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands, on behalf of Lunenburg Lymphoma Phase I/II Consortium (LLPC); ¹²University of Toronto and Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹³British Columbia Cancer Agency, Vancouver, BC, Canada; ¹⁴Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic; ¹⁵Brigham and Women's Hospital, Boston, MA, USA; ¹⁶Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁷Humanitas Cancer Center – Humanitas University, Rozzano–Milan, Italy

Change in Target Lesion per IRC

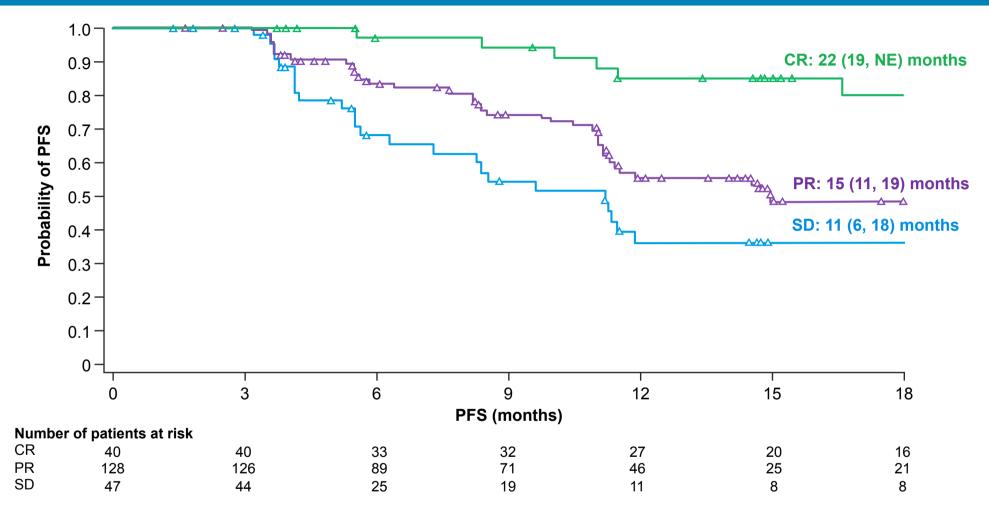
>95% of evaluable patients showed a reduction in tumor burden

Best Overall Response After Extended Follow-Up


	BV naïve	BV after auto-HSCT	BV before and/or after auto-HSCT	Overall	
	(Cohort A) n = 63	(Cohort B) n = 80	(Cohort C) n = 100	N = 243	
Objective response per IRC, ^a % (95% CI)	65 (52, 77)	68 (56, 78)	73 (63, 81)	69 (63, 75)	
Best overall response per IRC, %					
Complete remission ^b	29	13	12	16	
Partial remission	37	55	61	53	
Stable disease	24	21	15	19	
Progressive disease	11	8	10	9	
Unable to determine	0	4	2	2	

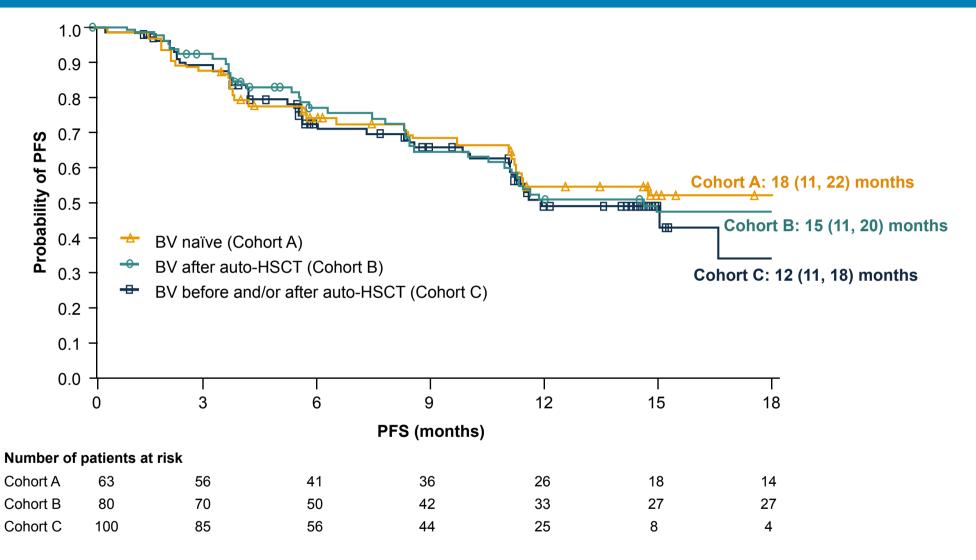
- Per investigator assessment, 33% of patients achieved CR and 39% achieved PR
- In post-hoc analyses, responses were similar irrespective of BV treatment sequence

Duration of Response by Best Overall Response

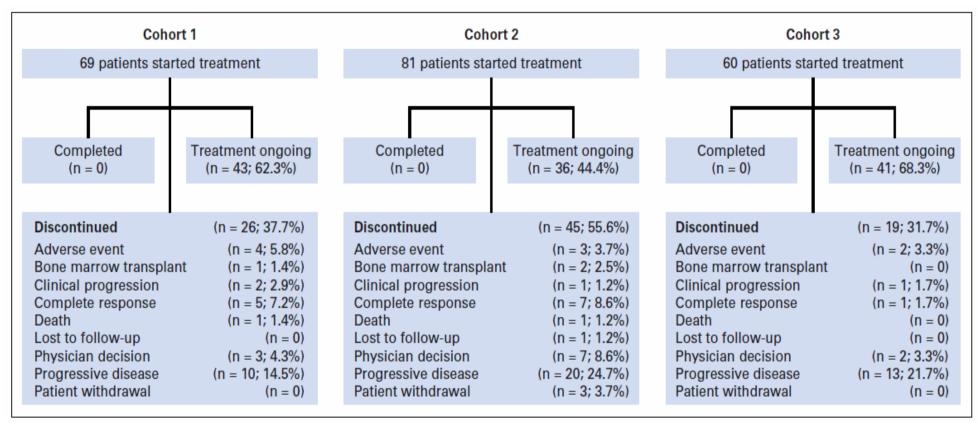


DOR by cohort	Cohort A n = 63	Cohort B n = 80	Cohort C n = 100	Overall N = 243
Median DOR in all responders, months	20 (13, 20)	16 (8, 20)	15 (9, 17)	17 (13, 20)
Median DOR in CR patients, months	20 (NE, NE)	20 (4, NE)	15 (8, NE)	20 (16, NE)
Median DOR in PR patients, months	17 (9, NE)	11 (7, 18)	13 (9, 17)	13 (9, 17)

Progression-Free Survival by Best Overall Response



Median PFS for all 243 patients was 15 (11–19) months



Progression-Free Survival by Cohort

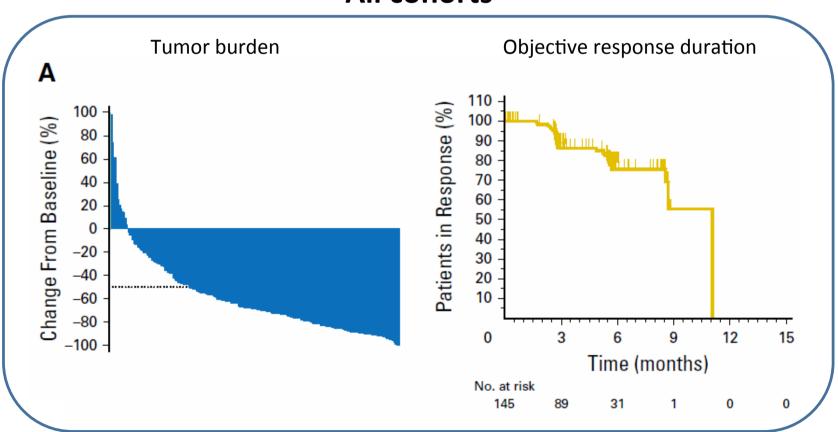
KEYNOTE-087: PHASE 2 STUDY WITH PEMBROLIZUMAB IN R/R HL

Cohort 1

ASCT and subsequent BV

Cohort 2

Salvage chemotherapy and BV (ineligible for ASCT)


Cohort 3

ASCT but not BV

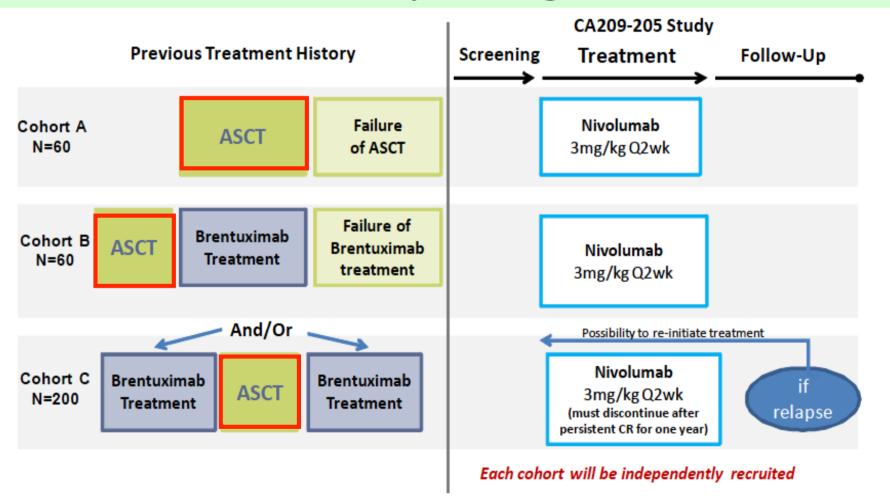
KEYNOTE-087: PHASE 2 STUDY WITH PEMBROLIZUMAB IN R/R HL

Decrease from baseline in tumor burden (left) and Kaplan-Meier estimates of objective response duration (right) on the basis of central review in patients with response.

All cohorts

Chen et al., Journal of Clinical Oncology 25 April 2017

RUOLO DEL TRAPIANTO


CONSOLIDARE LA RISPOSTA CON IL TRAPIANTO ?

AUTOLOGO?

ALLOGENICO?

CHECKMATE-205: PHASE 2 STUDY WITH NIVOLUMAB IN R/R HL

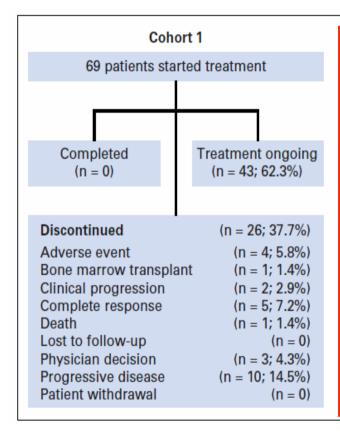
Study Design

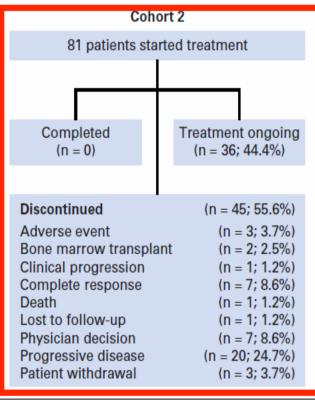
NIVOLUMAB IN HODGKIN'S LYMPHOMA

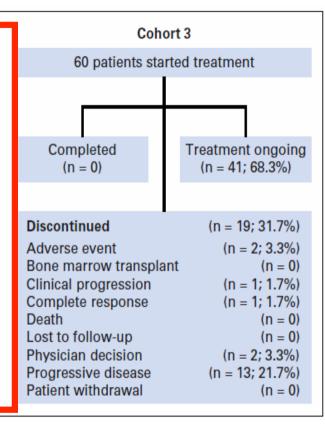
News

Back to News

FDA Approves Nivolumab for Hodgkin Lymphoma


The FDA granted nivolumab (Opdivo) ac (cHL) that has relapsed or progressed af posttransplantation brentuximab vedotin

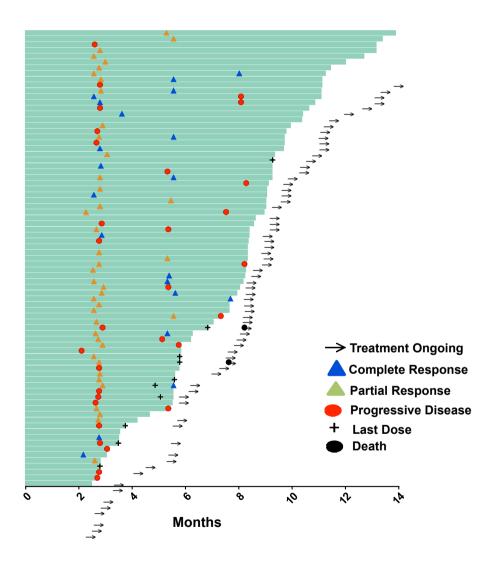

The approval was based on an objective (Trial 8 and Trial 9) of nivolumab in patier approved for a hematologic malignancy.


Trials 8 and 9 both included patients with cHL after failure of autologous HSCT and post status. Nivolumab was administered at 3 mg/kg IV over 60 minutes every 2 weeks until onclive.com

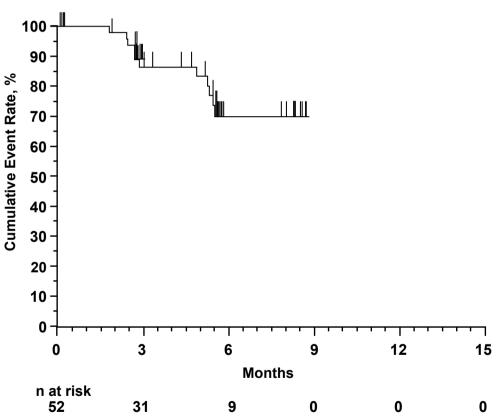
KEYNOTE-087: PHASE 2 STUDY WITH PEMBROLIZUMAB IN R/R HL

Cohort 1

ASCT and subsequent BV


Cohort 2

Salvage chemotherapy and BV (ineligible for ASCT)


Cohort 3

ASCT but not BV

KEYNOTE-087: PHASE 2 STUDY WITH PEMBROLIZUMAB IN R/R HL

COHORT B INELIGIBLE TO ASCT

- Median number of treatment cycles
 - 12 (range 1, 21)

- Median (range) time to response
 - 2.8 (2.2-5.6) months
- Response duration ≥6 months: 70%

Clinical Evaluation of PD-1 Blockade Relapsed/Refractory cHL

Disease	Study	Response rate (# pts)	PFS
cHL	Nivolumab pilot ¹	87% (20/23)	PFS 48% at median FU 9 mos
	Nivolumab registration trial		
	Cohort B (S/P ASCT/BV) ²	68% (54/80)	PFS 62% at median FU 9 mos
	FDA approval 5/ 2016		
	Pembrolizumab pilot ³	58% (18/31)	PFS ≥ 12 mos - 70%
	Pembrolizumab registration trial ⁴		
	Cohort 1 (S/P ASCT/BV)	74% (51/69)	PFS ≥ 6 mos - 82%
	Cohort 2 (ASCT ineligible)	64% (52/81)	PFS ≥ 6 mos - 70%
	Cohort 3 (s/p ASCT, no BV)	70% (42/60)	PFS ≥ 6 mos - 76%
	FDA approval 3/ 2017		

¹Ansell et al., N. Engl. J. Med. 2015; 372(4):311-9 and ASH 2016

²Younes et al., Lancet Oncol. 2016; 17(9):1283-1294 and Timmerman ASH 2016

³Armand et al., J. Clin. Oncol. Jun 27, 2016 Epub ahead of print

⁴Moskowitz et al., J. Clin. Oncol. Apr 25, 2017 Epub ahead of print

RUOLO DEL TRAPIANTO: PD-1 In POST-ALLO

IPILIMUMAB AFTER ALLOTRANSPLANT IN HL

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Ipilimumab for Patients with Relapse after Allogeneic Transplantation

Outcome of treatment

Patients who received maximum administered dose (10 mg/kg)	22
Complete response	5
Partial response	2
Stable disease	6
Progression of disease	9

CLINICAL TRIALS AND OBSERVATIONS

Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma

This study retrospectively assessed the efficacy and toxicity of **nivolumab** (PD-1 pathway blocking monoclonal antibody) as a single agent in 20 HL patients relapsing after allo-HCT

Key Points:

- PD-1 blockade with nivolumab provides durable disease control after allo-HCT
- PD-1 blockade with nivolumab after allo-HCT is associated with 30% acute GVHD

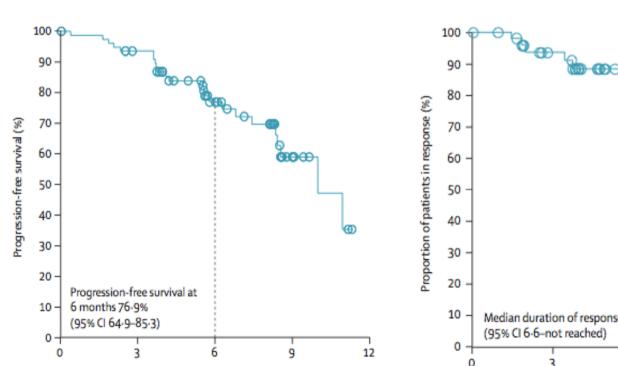
Regular Article

TRANSPLANTATION BLOOD, 13 JULY 2017 · VOLUME 130, NUMBER 2 Bradley M. Haverkos et al.

PD-1 blockade for relapsed lymphoma post—allogeneic hematopoietic cell transplant: high response rate but frequent GVHD

Key Points

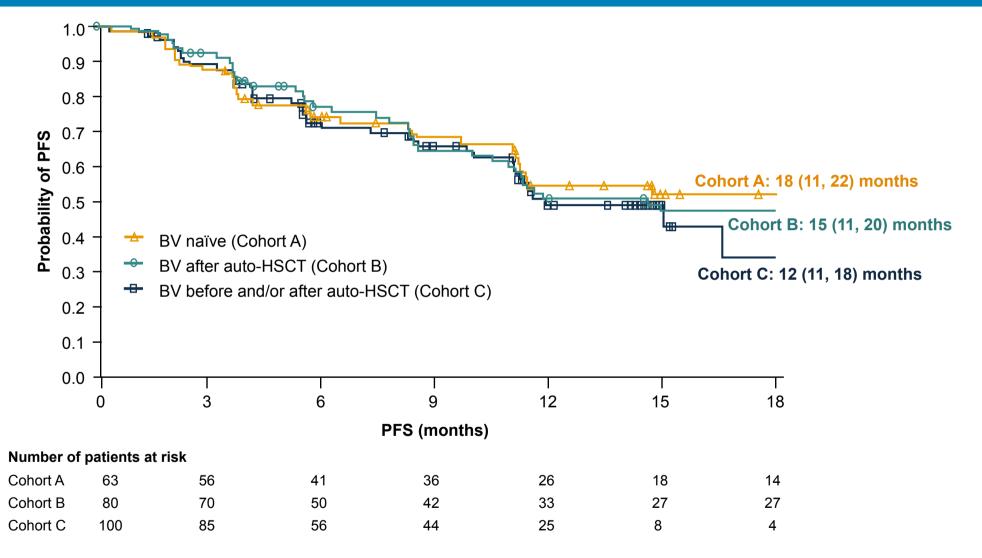
- Checkpoint blockade via anti-PD-1 mAbs was associated with a high overall response rate in relapsed HL allo-HCT patients.
- Checkpoint blockade via anti-PD-1 mAbs after allo- HCT can be complicated by rapid onset of severe and treatmentrefractory GVHD.


RUOLO DEL TRAPIANTO: ALLO POST-PD1 IN

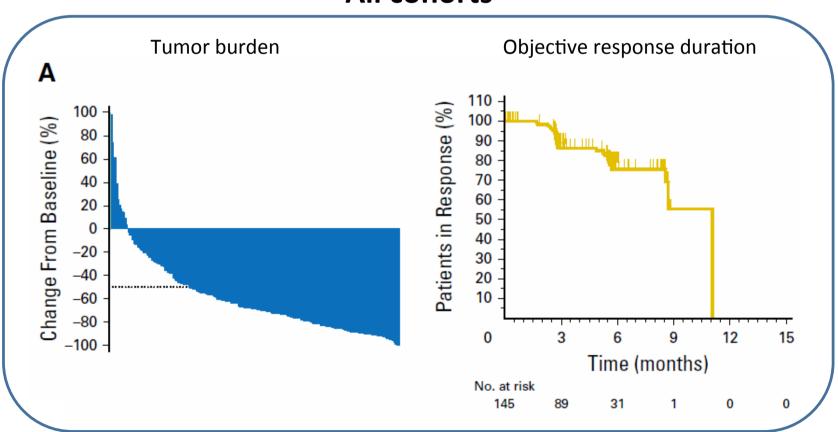
CHECKMATE-205: PHASE 2 STUDY WITH NIVOLUMAB IN R/R HL

Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial

Anas Younes, Armando Santoro, Margaret Shipp, Pier Luigi Zinzani, John M Timmerman, Stephen Ansell, Philippe Armand, Michelle Fanale, Voravit Ratanatharathorn, John Kuruvilla, Jonathon B Cohen, Graham Collins, Kerry J Savage, Marek Trneny, Kazunobu Kato, Benedetto Farsaci, Susan M Parker, Scott Rodia, Margaretha G M Roemer, Azra H Ligon, Andreas Engert

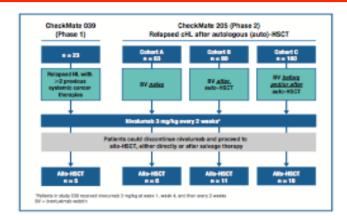


Progression-Free Survival by Cohort

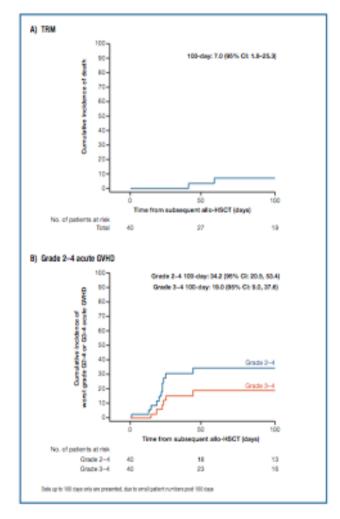


KEYNOTE-087: PHASE 2 STUDY WITH PEMBROLIZUMAB IN R/R HL

Decrease from baseline in tumor burden (left) and Kaplan-Meier estimates of objective response duration (right) on the basis of central review in patients with response.


All cohorts

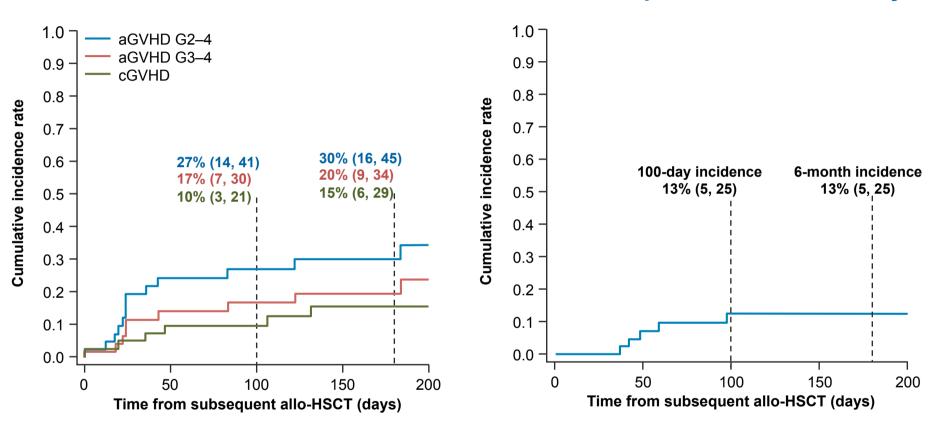
Chen et al., Journal of Clinical Oncology 25 April 2017


Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation After Treatment With Nivolumab for Relapsed/Refractory Hodgkin Lymphoma

Phllippe Armand,¹ Pier Luigi Zinzani,² Graham P Collins,³ Jonathon B Cohen,⁴ Ahmad Halwani,⁵ Carmelo Carlo-Stella,⁶ Michael Millenson,ˀ Mariano Provencio,⁶ Eva Domingo Domenech,⁶ Lisa Giulino-Roth,⁰ Luca Castagna,⁶ Kazunobu Kato,¹¹ Mihaela Popa McKiver,¹¹ Anne Sumbul,¹¹ Lili Zhu,¹¹ Armando Santoro⁶

Conclusions

- After limited follow-up the incidence of severe (G4) acute GVHD was 19% in this cohort, and included fatalities
- Overall incidence of TRM and GVHD are within the range of published data for patients with cHL undergoing allo-HSCT
- Rate of G3—4 GVHD in this study may have been overestimated due to imputation of 2 GVHD cases with unknown grade as G4
- To date, these data suggest that treatment with nivolumab is not a strict contraindication to subsequent allo-HSCT; however, caution about early or severe GVHD seems warranted
- Additional follow-up and experience using allo-HSCT after nivolumab will provide clarity on the patient demographics, clinical factors, and treatment timings that may influence outcomes



Outcomes After Allogeneic HSCT

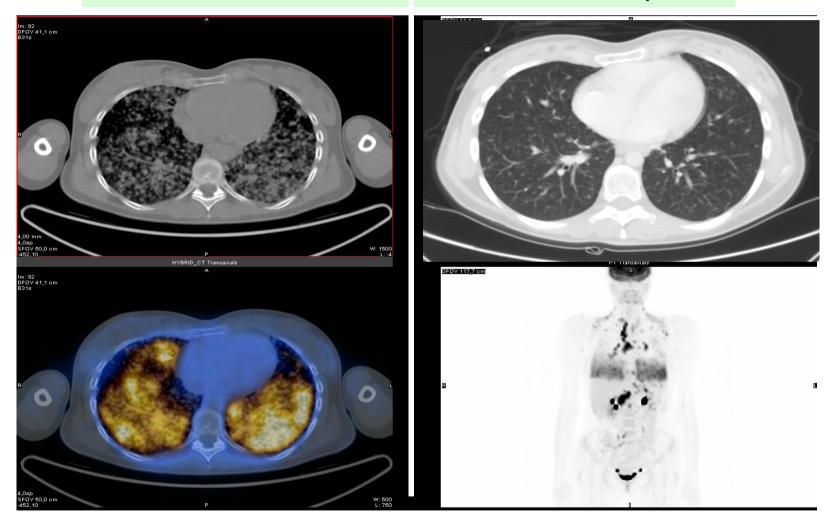
Graft versus host disease

Transplant-related mortality

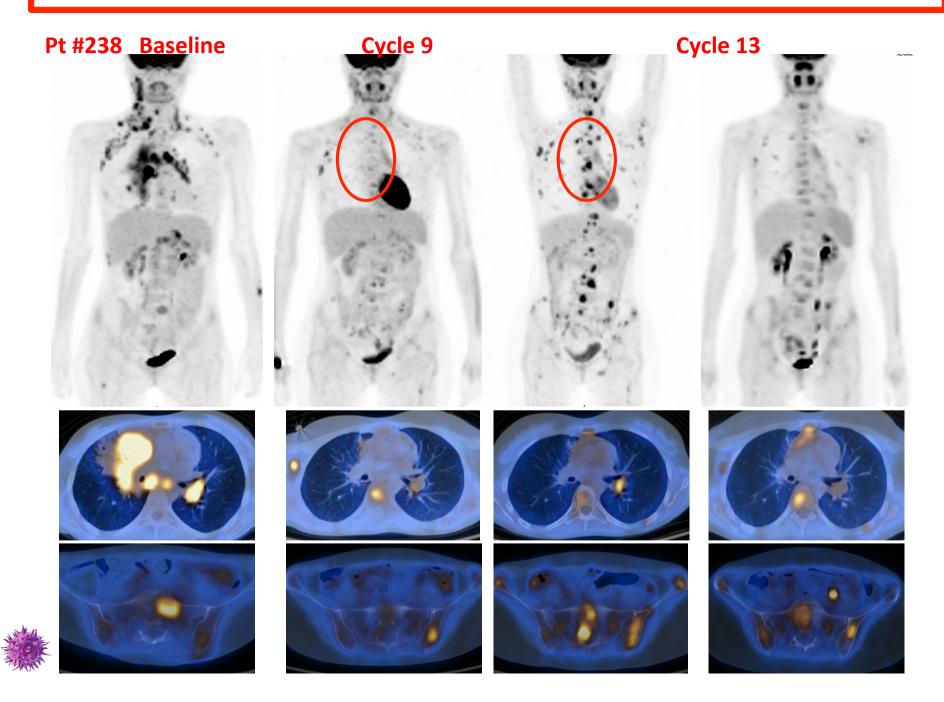
- Median post-transplant follow-up for 44 patients who received allo-HSCT after nivolumab was 5.5 months (019.0)
- Median time from last dose of nivolumab to allo-HSCT was 1.6 months (0.5–13.5)
- Historical 100-day incidence of aGVHD and TRM was 26–60% and 6–28%, respectively¹⁻⁵

Unknown aGVHD onset dates imputed to allo-HSCT date and GVHD of unknown grade imputed to G4. Death was considered a competing risk to aGVHD (2/44 competing events) and cGVHD (6/44 competing events). Post-transplant progression was considered a competing risk to TRM (3/44 competing events). Data are % (95% CI). aGVHD = acute graft versus host disease; cGVHD = chronic GVHD; G = grade; TRM = transplant-related mortality

RUOLO DEL TRAPIANTO: ALLO POST-PD1 IN



CHECKPOINT INHIBITORS: RESPONSE EVALUATION

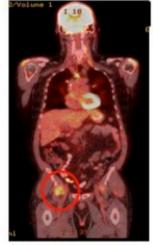

Pt #270 - Baseline

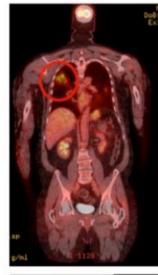
Cycle 3

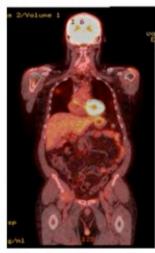
CHECKPOINT INHIBITORS: *RESPONSE EVALUATION*

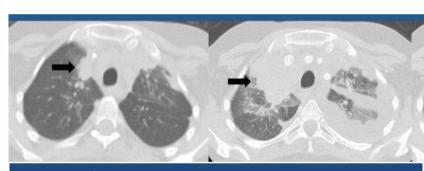
Refinement of the Lugano classification response criteria for lymphoma in the era of immunomodulatory therapy

Bruce D. Cheson, Stephen Ansell, Larry Schwartz, Leo I. Gordon, Ranjana Advani, Heather A. Jacene, Axel Hoos, Sally F. Barrington and Philippe Armand

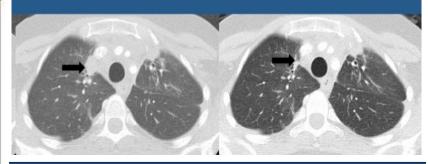

May 2015




October 2015



December 2015



Lymphoma Response to Immunomodulatory therapy Criteria (LyRIC)

Baseline CT Res

Restaging CT 1

Restaging CT 2

Restaging CT 3

CHECKPOINT INHIBITORS: *RESPONSE EVALUATION*

LYmphoma
Response to
Immunomodulatory therapy
Criteria

INDETERMINATE RESPONSE CATEGORY

IR	Definition
IR1	Increase in overall tumor burden (SD)≥50% of up to 6 measurable lesions in the first 12 ws of therapy without clinical deterioration
IR2	Appearance of new lesions, or growth of one or more existing lesions ≥50% at any time during treatment, occuring in the context of lack of overall progression of overall tumor burden
IR3	Increase in FDG uptake of one or more lesions without a concomitant increase in lesion size or number

CHECKPOINT INHIBITORS: TREATMENT DURATION

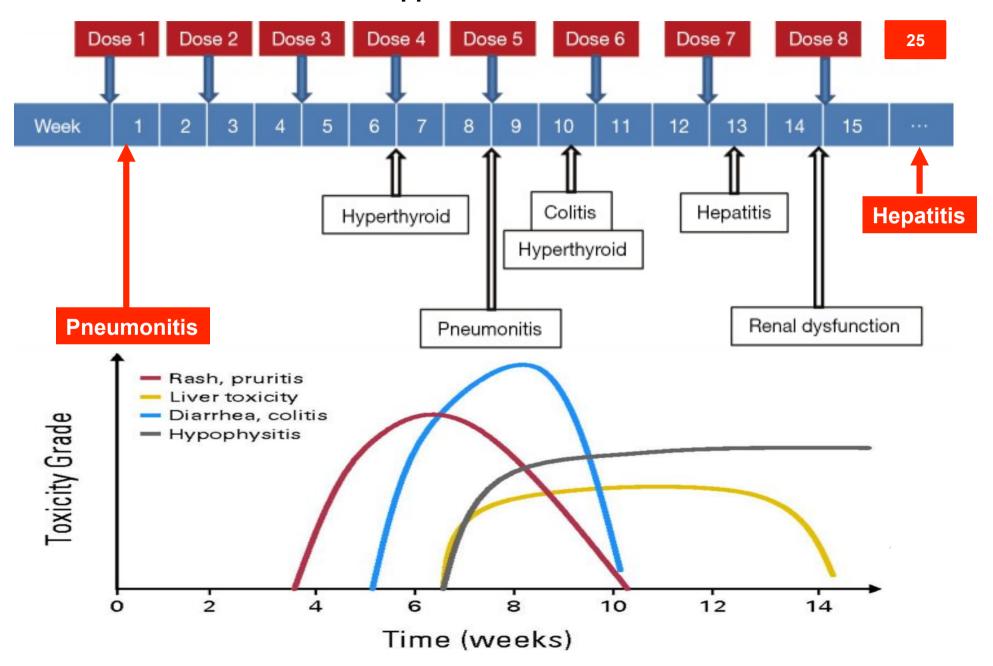
NO ALLO-TRANSPLANT

2 YEARS?

ALLO-TRANSPLANT

8 COURSES?

CHECKPOINT INHIBITORS: SAFETY


	All-cause (n=80)	All-cause adverse events (n=80)		Drug-related adverse events (n=80)		
	Grade 1–2	Grade 3	Grade 4	Grade 1–2	Grade 3	Grade 4
(Continued from previous page)						
Cardiac failure	0	1 (1%)	0	0	0	0
Left ventricular dysfunction	0	1 (1%)	0	0	0	0
Pericardial effusion	0	0	1 (1%)	0	0	0
Autoimmune hepatitis	0	1 (1%)	0	0	1 (1%)	0
Data are n (%). Adverse events in this t events. One patient died as a result of r Table 3: Adverse events	_		•		ents, and all g	rade 3-4

- -MORE COMMON AE: FATIGUE (25%), IRR (20%), RASH (16%)
- -MORE COMMON SAES ≥GR3: NEUTROPENIA (5%), INCREASED LIPASE LEVEL (5%)
- -MOST COMMON SAE ANY GRADE: FEVER

PD1-blockade: safety profiles

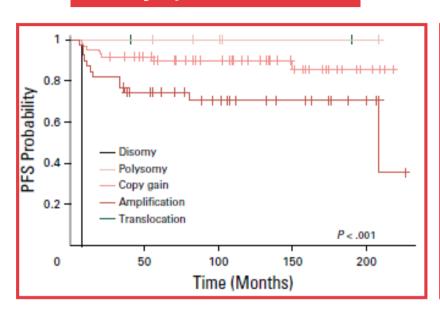
Nivolumab: Median time for appearance of immune-related adverse events

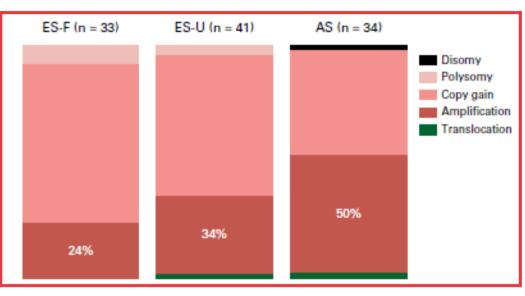
PD1-blockade and Hodgkin Lymphoma: Safety Issues

EYE SKIN Uveitis **Dermatitis** Erythema multiforme **Iritis** Stevens Johnson syndrome Scleritis Retinitis Toxic epidermal necrolysis **ENDOCRINE** Vitiligo Hypothyroidism Alopecia Hyperthyroidism Adrenal insufficiency Hypophysitis HEPATIC **Transaminitis** Hepatitis, autoimmune PULMONARY Pneumonitis Interstitial lung disease GASTROINTESTINAL (GI) Acute interstitial pneumonitis Colitis Enterocolitis **Necrotizing** colitis NEUROLOGIC GI perforation **Pancreatitis** Autoimmune neuropathy Demyelinating polyneuropathy Guillain-Barre RENAL Myasthenia gravis like syndrome Nephritis, autoimmune Renal failure **Autoimmune encephalitis**

he more frequent serious complications appear in bold type.

I-O Therapies Have Unique Safety Profiles¹⁻⁵


GENERAL RULES: MANAGEMENT OF NIVOLUMAB-RELATED SELECT AES


Grade	Management	Continue the study drug?
Low	Delay the dose	Resume Nivolumab when AEs resolve to grade ≤ 1 or baseline
Moderate ~ High	Administer Corticosteroids ± Immunosuppressants (anti-TNF, mycophenolate, etc)	Discontinue Nivolumab permanently (Delay in some situations)

CHECKPOINT INHIBITORS: BIOMARKERS

PFS by 9p24.1 alterations

Frequency of 9p24.1 alterations by stage

- PD-L1/PD-L2 alterations are a defining feature of cHL (97%)
- Amplification of 9p24.1 are more common in advanced stage pts and correlate with shorter PFS
- Near-uniform alterations of PD-L1/PD-L2 loci explain the remarkable activity of PD-1 blockade in cHL

CHECKMATE 205: BIOMARKERS - Cohort B-C

Figure 4. PFS according to 9p24.1 genetic alterations

9p24.1 genetic alterations

Figure 5. PFS according to PD-L1 H-score for malignant cells (in cases with

Figure 5. PFS according to PD-L1 H-score for malignant cells (in cases with 9p24.1 data)

A PD-L1 H-score - malignant cells

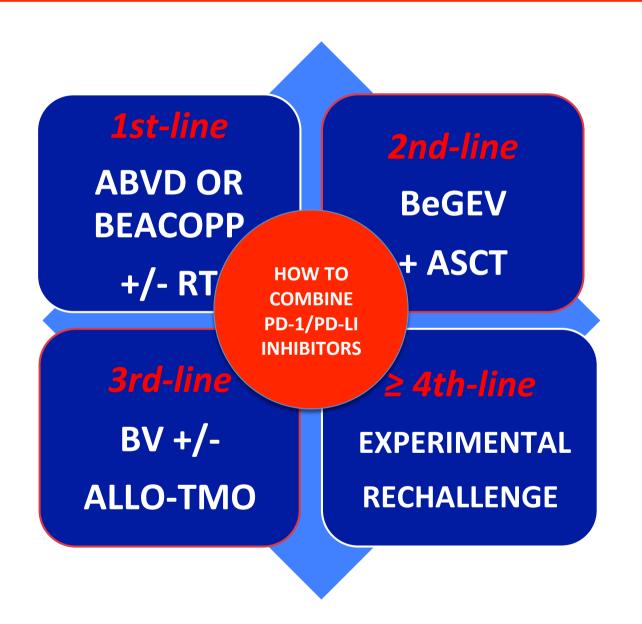
B PD-L1 H-score - malignant cells

Number at r Polysom Copy Gai Amplificatio

PFS = progression-free

PFS Prohability

PD-L1 H-score - malignant cells 8.0 8.0 PFS Probability Probability 0.6 0.6 0.4 0.4 0.2 0.2 0.2 p = 0.048p = 0.010 14 12 14 Time (months) Time (months) Number at risk Number at risk Q1 - 24 Q1/Q2 - 47 3 5 Q3/Q4 - 45 16 PFS = progression-free survival


NIVOLUMAB IN HODGKIN'S LYMPHOMA

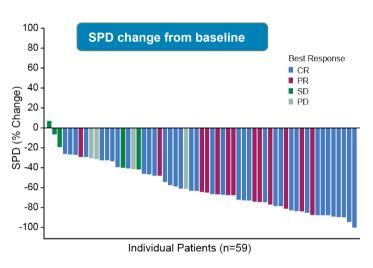
PD-1 INHIBITOR
REPRESENTS
A REAL ACHIEVEMENT
IN HL PATIENT CARE

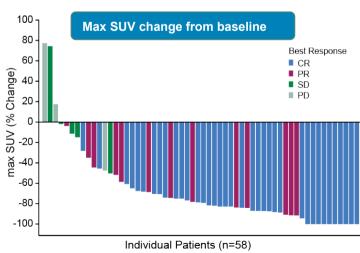
WHAT THE NEXT STEP?

THE NEXT SCENARIOS IN HL TREATMENT

Interim Results From a Phase 1/2 Study of Brentuximab Vedotin in Combination With Nivolumab in Patients with Relapsed or Refractory Hodgkin Lymphoma

Alex F. Herrera¹, Alison J. Moskowitz², Nancy L. Bartlett ³, Julie M. Vose⁴, Radhakrishnan Ramchandren⁵, Tatyana A. Feldman⁶, Ann S. LaCasce⁷, Stephen M. Ansell⁸, Craig H. Moskowitz², Keenan Fenton⁹, Carol Anne Ogden⁹, David Taft⁹, Qu Zhang⁹, Kazunobu Kato¹⁰, Mary Campbell⁹, Ranjana H. Advani¹¹


¹City of Hope National Medical Center, Duarte, CA, USA; ²Memorial Sloan Kettering Cancer Center, New York, NY, USA; ³Washington University School of Medicine, St. Louis, MO, USA; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ⁵Karmanos Cancer Institute, Detroit, MI, USA; ⁶Hackensack University Medical Center, Hackensack, NJ, USA; ⁷Dana Farber Cancer Institute, Boston, MA, USA; ⁸Mayo Clinic, Rochester, MN, USA; ⁹Seattle Genetics, Inc., Bothell, WA, USA; ¹⁰Bristol-Myers Squibb, Princeton, NJ, USA; ¹¹Stanford University Medical Center, Palo Alto, CA, USA



Tumor Response

85% objective response rate with 63% complete responses

	N = 59 n (%)
Complete response (CR)	37 (63)
Deauville ≤ 2	29 (49)
Deauville 3	7 (12)
Deauville 5 ^a	1 (2)
Partial response (PR)	13 (22)
Deauville 4	7 (12)
Deauville 5	6 (10)
No metabolic response (SD)	5 (8)
Deauville 5	5 (8)
Progressive disease (PD)	3 (5)
Deauville 5	2 (3)
Missing	1 (2)
Clinical Progression (CP)	1 (2)

THE NEXT SCENARIOS IN HL TREATMENT

PD-1/PD-L1

+

CHT

PD-1/PD-L1

+

BV

PD-1/PD-L1

+

other IO-T

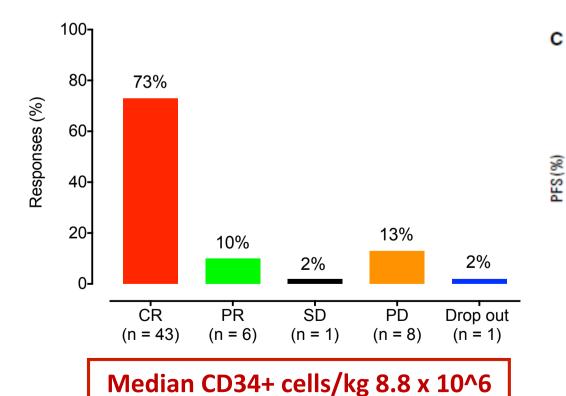
PD-1/PD-L1

+

NEW TARGETED TH

BeGEV

Bendamustine in Combination With Gemcitabine and Vinorelbine Is an Effective Regimen As Induction Chemotherapy Before Autologous Stem-Cell Transplantation for Relapsed or Refractory Hodgkin Lymphoma: Final Results of a Multicenter Phase II Study


80

60

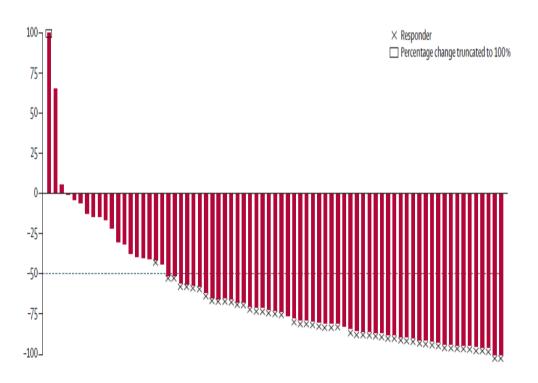
20

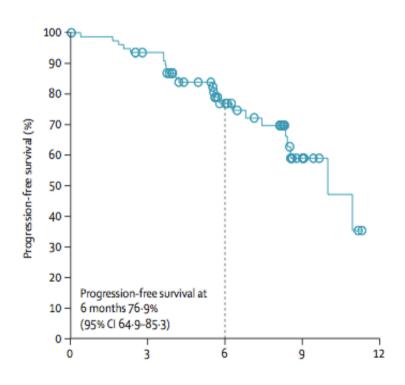
0

Bendamustine 90 mg/mq d 2-3, Gemcitabine 800 mg/mq d 1-4, Vinorebine 20 mg/mq d 1

Santoro A et al, JCO 2016

Time From First BeGEV Treatment (months)


Refractory


WHY NOT?

Bendamustine in Combination With Gemcitabine and Vinorelbine Is an Effective Regimen As Induction Chemotherapy Before Autologous Stem-Cell Transplantation for Relapsed or Refractory Hodgkin Lymphoma: Final Results of a Multicenter Phase II Study

Bendamustine 90 mg/mq d 2-3, Gemcitabine 800 mg/mq d 1-4, Vinorebine 20 mg/mq d 1

