7th INTERNATIONAL SYMPOSIUM ON ACUTE PROMYELOCYTIC LEUKEMIA

ROME, September 24-27, 2017

Chairmen: F. Lo-Coco, M.A. Sanz Honorary President: F. Mandelli

Disclosures of Massimo Breccia

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis			х				
BMS			х				
Pfizer			x				
Incyte			х				

Arsenic trioxide for the management of relapsed APL patients

Massimo Breccia Azienda Policlinico Umberto I° Sapienza University Rome

Current therapy for relapsed APL patients

- About 20% of pts have been reported to relapse after risk-adapted ATRA+CHT regimens
- Clinical benefit has been reported for early identification of disease recurrence and pre-emptive therapy at the time of molecular relapse
- Treatment of molecular relapse is associated to better tolerability, decreased need of hospitalization, decreased rate of early death and differentiation syndrome
- Current literature on the treatment of relapsed APL is only available for patients relapsing after ATRA and CHT

Table 4. Management of relapse

Recommendation	Level of evidence	Grade of recommendation
4.1. For patients with confirmed molecular relapse (defined as 2 successive PCR-positive assays, with stable or rising <i>PML-RARA</i> transcript levels detected in independent samples analyzed in 2 laboratories) preemptive therapy has to be started promptly to prevent frank relapse.	lla	В
4.2. Although ATRA in combination with chemotherapy can be used as salvage therapy, ATO-based regimens are presently regarded the first option for treatment of relapsed APL.	IV	С
4.3. Patients achieving second CR should receive intensification with SCT or chemotherapy, if possible.	IV	С
Allogeneic HSCT is recommended for patients failing to achieve a second molecular remission.	IV	С
4.5. Autologous HSCT is a valid option for patients without detectable MRD in the marrow and with an adequate PCR negative harvest.	lla	В
4.6. For patients in whom HSCT is not feasible, the available options include repeated cycles of ATO with or without ATRA with or without chemotherapy.	IV	С
4.7. For patients with CNS relapse, induction treatment consists of weekly triple intrathecal therapy (ITT) with methotrexate, hydrocortisone, and cytarabine until complete clearance of blasts in the cerebrospinal fluid, followed by 6 to 10 more spaced out ITT treatments as consolidation. Systemic treatment should also be given.	IV	С

NCCN guidelines for relapsed APL

Printed by massimo breccia on 7/22/2017 1:01:00 PM. For personal use only. Not approved for distribution. Copyright © 2017 National Comprehensive Cancer Network, Inc., All Rights Reserved.

"See Arsenic trioxide monitoring, Supportive Care (AML-C 2 of 2).

^{hh}Following the first cycle of consolidation, if the patient is not in molecular remission (by quantitative PCR on marrow sample), consider matched sibling or alternative donor (haploidentical, unrelated donor or cord blood) HCT or clinical trial. Testing is recommended at least 2–3 weeks after the completion of arsenic to avoid false positives.

ⁱⁱOutcomes are uncertain in patients who received arsenic trioxide during initial induction/consolidation therapy.

ⁱⁱThere is a small randomized trial that suggests that the addition of ATRA does not confer any benefit over arsenic alone. Raffoux E, et al. Combined treatment with arsenic trioxide and all-trans-retinoic-acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol 2003;21:2326-2334.

^{kk}Dose adjustment for patients >60 years: 9 mg/m²/d IV (ages 61–70) or 6 mg/m²/d IV (ages >70). Iland HJ, et al. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 2012;120:1570-1580.

If patient cannot tolerate anthracycline, may use ATRA + arsenic trioxide.

mmConsider gemtuzumab on a compassionate use basis.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 3.2017, 06/06/17 @ National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines" and this illustration may not be reproduced in any form without the express written permission of NCCN*

ATO different compounds

Wang Z, Chen Z Blood 2008

Different mechanisms of action

 Low concentration: degradation of PML-RARα (via sumoilation of PML); fosforilation of NCoR and transcriptional activation

High concentration:
 increased production of
 reactive oxygen species
 (ROS); induction of caspasis

The real target of ATO is PML

Chen *et al*. Blood 2011

ATO can eradicate leukemia-initiating cells (LIC)

• Inhibition of Notch1, Gli2 and Beta-catenin or activation of pathways such as MEK/ERK with stimulation of autophagy and final degradation of PML.

Chen *et al*. Blood 2011

....taming an evil with a toxic agent...

Wang Z, Chen Z Blood 2008

First experiences in APL relapses

Chinese experience in relapsed pts

Niu et al. Blood 1999

Author ^{ref.}	<i>Patients</i> n	Age (years) range (median)	ATO daily dose	Induction with ATO (days)	Post-induction therapy	Stem cell transplantation n
Shen ²⁴	15	14–53	10 mg	28-54	1 course ATO	
Soignet ^{20,44}	52	9-75	0.15 mg/kg	maximum 60	maximum 5 courses ATO	auto. 3, allo. 14
Niu ⁴⁵	47	7–55 (35)	10 mg	42 ^a	ATO ± chemotherapy or chemotherapy alone	
Shen ⁴⁶	20	6-55	0.08 mg/kg	28 ^a	daunorubicin	
Kwong ⁴⁷	8	22-45	10 mg	28-51	idarubicin	
Leoni ⁴⁸	7	21–71 (55)	10 mg	28-40	high-dose Ara-C, mitoxantron	auto. 2, allo. 2
Ohnishi ⁴⁹	14	23-65	0.15 mg/kg	maximum 60	1 course ATO, various chemotherapy ± ATRA	allo. 2
Lazo ⁵⁰	12	26–72 (44)	0.15 mg/kg	maximum 60	up to 4 courses ATO ± various therapy	allo. 1
Raffoux ⁵¹	20	NR	0.15 mg/kg	maximum 56 ^b	1 to 2 courses ATO ± ATRA	auto. 1, allo. 7
Carmosino ⁵²	11	5-53	0.15 mg/kg	maximum 60	1 course ATO, ± ATRA+idarubicin	auto. 2, allo. 2
Shigeno ⁵³	34	17-82 (47)	0.15 mg/kg	maximum 60	1 course ATO ± chemotherapy+ATRA ± ATO	auto. 1, allo. 9
Thomas ⁵⁴	25	21-80 (53)	0.15 mg/kg	maximum 60	1 course ATO, ± various therapy ± ATO; MT	auto. 9, allo. 3
Aribi ⁵⁵	8	18-68	0.15 mg/kg	maximum 60	5 courses ATO+ATRA+GO; MT	allo. 1
Alimoghaddam ⁵⁶	31	10-79 (27)	0.15 mg/kg	maximum 60	1 course ATO, since the year 2006: 4 courses ATO	
Total	304	5-82 years		up to 60	ATO consolidation \pm variable chemotherapy \pm ATRA	n=59

Results of ATO treatment in relapsed APL

Author ^{ref.}	<i>Patient</i> s n	<i>CR</i> n <i>(%)</i>	<i>Doc. mCR</i> n <i>(%)</i>	Resistance n (%)	<i>ED</i> n <i>(%)</i>	Days to CR median (range)	Estimated survival (%)
Shen ²⁴	15	14 (93)	1/10 (10) ^a	1 (7)	0	38 (28–54)	>80 after 17 months
Soignet ²⁰	12	11 (92)	8/11 (73) ^b	0	1 (8)	47 (24-83)	
Niu ⁴⁵	47	40 (85)	1/15 (7) ^a	3 (6)	4 (8.5)	31	50 after 24 months
Soignet ⁴⁴	40	34 (85)	25/29 (86) ^b	6 (15)	0	59 (28-85)	66 after 18 months
Shen ⁴⁶	20	16 (80)	0/6ª	2 (10)	2 (10)	* -	62 after 24 months
Kwong ⁴⁷	8	8 (100)	0/8 ^a	0	0	45	
Leoni ⁴⁸	7	6 (86)	NR	0	1 (14)	20-40	>80 after 24 months
Ohnishi ⁴⁹	14	11 (79)	6/10 (60) ^a	2 (14)	1 (7)	43 (27-60)	
Lazo ⁵⁰	12	12 (100)	7/10 (70) ^a	0	0	52 (27-75)	
Raffoux ⁵¹	20	16 (80)	3/16 (19) ^a	2 (10)	2 (10)	42 (14-86)	59 after 24 months
Carmosino ⁵²	11	8 (73)	8/11 (73) ^b	0	3 (27)	37.5 (28-50)	
Shigeno ⁵³	34	31 (91)	18/25 (72) ^b	2 (6)	1 (3)	46 (26-60)	56 after 24 months
Thomas ⁵⁴	25	21 (84)	8/21 (38) ^a	2 (8)	2 (8)	49	77 after 24 months
Aribi ⁵⁵	8	8 (100)	8/8 (100) ^b	0	0	39 (21–56)	75% after 36 months
Alimoghaddam ⁵⁶	31	27 (77)	NR	3 (10)	4 (13)	30	81% after 24 months
Total	304	263 (86)	93/180 (52)	23 (7)	21 (7)	30–59 (range of study medians)	50-81% after 24 months

Meta-analysis of ATRA+ATO for relapsed pts

	ATO+ATRA (255 pts)	ATO (202 pts)	Significance
CR	89.8%	81.7%	ns
Time to CR	Heterogenous data		nr
ED	6%	11%	ns
mCR post 1° cycle	25%	22.7%	ns
mCR post consolidation	70%	39%	0.01
DFS 2-year	84.6%	63.6%	0.07

Wang et al, Leuk Res 2011

Synergism ATRA+ATO: impact on CR

	ATO/A	IRA	ATO)		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-H, Fi	xed, 95% Cl		
1.1.1 New diagnosed APL											
Bai 2007	16	16	14	14	9.0%	1.00 [0.88, 1.13]			+		
Wang 2004N	74	80	36	40	28.0%	1.03 [0.91, 1.16]		_			
Shen 2004	20	21	18	20	10.8%	1.06 [0.89, 1.26]					
Su 2006	33	40	27	36	16.6%	1.10 [0.87, 1.39]					
Li 2008	53	55	22	26	17.4%	1.14 [0.96, 1.35]					
Subtotal (95% CI)		212		136	81.8%	1.07 [0.99, 1.15]					
Total events	196		117								
Heterogeneity: Chi ² = 2	.03, df = 4	4 (P = 0	.73); l² =	0%							
Test for overall effect: 2	z = 1.62 (i	P = 0.10))								
1.1.2 Relapsed APL											
Raffoux 2003	8	10	8	10	4.7%	1.00 [0.65, 1.55]			•	_	
Niu 1999	5	5	26	31	4.9%	1.11 [0.83, 1.48]			•	•	
Wang 2004R	20	28	14	25	8.6%	1.28 [0.84, 1.94]					
Subtotal (95% CI)		43		66	18.2%	1.16 [0.91, 1.48]					
Total events	33		48								
Heterogeneity: Chi ² = 0	.74, df = 2	2 (P = 0	.69); I ² =	0%							
Test for overall effect: 2	z = 1.18 (i	P = 0.24	4)								
Total (95% CI)		255		202	100.0%	1.08 [1.00, 1.17]			-		
Total events	229		165								
Heterogeneity: Chi ² = 3	.47, df =	(P=0	.84); l² =	0%			0.5	0.7	1 4	+	
Test for overall effect: 2	Z = 2.01 (I	P = 0.04	4)				0.0	Eavours AT			2
								Favours AT	J Favours ATO//	AT KA	

Meta-analysis results reported a significant increase of CR both in relapsed and newly diagnosed pts with ATO+ATRA association

Synergism ATRA+ATO: impact on early death

	ATO/A	TRA	ATO)		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
1.2.1 New diagnosed APL							
Bai 2007	0	16	0	14		Not estimable	
Li 2008	2	55	3	26	18.9%	0.32 [0.06, 1.77]	
Shen 2004	1	21	2	20	9.5%	0.48 [0.05, 4.85]	
Su 2006	7	40	9	36	44.0%	0.70 [0.29, 1.69]	
Wang 2004N	2	80	1	40	6.2%	1.00 [0.09, 10.70]	
Subtotal (95% CI)		212		136	78.6%	0.60 [0.30, 1.22]	-
Total events	12		15				
Heterogeneity: Chi ² = 0	.87, df = 3	3 (P = 0	.83); I² =	0%			
Test for overall effect: 2	z = 1.41 (l	P = 0.16	6)				
1.2.2 Relapsed APL							
Raffoux 2003	0	10	2	10	11.6%	0.20 [0.01, 3.70]	
Wang 2004R	3	28	2	25	9.8%	1.34 [0.24, 7.38]	
Subtotal (95% CI)		38		35	21.4%	0.72 [0.19, 2.79]	
Total events	3		4				
Heterogeneity: Chi ² = 1	.25, df =	1 (P = 0	.26); I ² =	20%			
Test for overall effect: 2	z = 0.47 (l	P = 0.64	4)				
Total (95% CI)		250		171	100.0%	0.63 [0.34, 1.17]	
Total events	15		19				
Heterogeneity: Chi ² = 2	.22, df =	5 (P - 0	.82); I² =	0%			
Test for overall effect: 2	z = 1.46	P = 0.14	4)				500 Eavours ATO/ATRA Eavours ATO
Test for subgroup differ	ences: N	ot appli	eaple				

Meta-analysis results did not report and increase of ED with ATO +ATRA association

Wang et al, Leuk Res 2011

Shanghai experience

- 64 relapsed pts treated in first relapse with ATO (12 pts with molecular and 52 with hematologic relapse)
- With a median follow-up of 27 months (range, 6–57) in the molecular relapsed subgroup, the 3-year relapse-free survival (RFS) and overall survival (OS) rates were 81.5 % and 100 %, respectively. With a median follow-up of 38 months (range, 0–129) in the hematologic relapse group, the 3-year RFS and OS rates were 57.1 % and 72.1 %, respectively.
- Increased relapse rate in pts who received ATO after previous induction with the same drug

ELN registry: update

• 155 relapsed pts treated in first relapse with ATO

	Hematological			Molecular			Р	Extramedullary		
	relapse			relapse			value*	relapse		
No of patients		104			40				11	
<u>N=100</u>		N	%		N	%			N	%
Results after			70			70				70
induction										
CR (hematological)		92/104	88		-				11/11	100
Resistance		5/104	5		-				0	0
(hematological)*										
Death		7/104	7		0/40	0	0.19		0/11	0
Side effects of ATO during induction										
APL diff. syndome		22/83	27		0/40	0	<0.001		0/11	0
Leukocytosis		36/92	39		0/40	0	<0.001		0/11	0
Infection /FUO		27/63	43		3/29	10	0.002		4/11	36
Hepatotoxicity [.]		11/56	20		3/28	11	0.37		2/8	25
Rate of molecular remission										
After induction		40/76	53		21/39	54	1.0		9/9	100
After consolidation		39/53	74		18/29	62	0.32		11/11	100
Outcome	% [95% CI]			% [95% CI]				% [95% CI]		
OS							0.85			
at 3 years	68 [58;78]			66 [57;75]				90 [82;100]		
No of patients N=146		95			40				11	
CIR							0.3			
at 3 years	41 [29;52)			48 [29;64]	1			11 [0;42]		

ELN registry: OS and CIR according to type of relapse

ATO as maintenance in relapsed patients

9 relapsed pts

- 7 pts in 1[^] molecular relapse + 2 pts in 2[^] relapse (median time from first CR 1.9 years)
- Treatment with ATRA+ATO according to Estey schedule
- 2 pts in mCR after 1 cycle and 7 pts after 2 cycles (only 2pts were hospitalized for the treatment of hematologic relapse)
- 8 pts in long-term remission (88%) without transplant for a median of 25 months (range 11-75). Only 1 pt in relapse treated with BMT.
- Update (+47 months): all pts in long-term remission after this treatment

ATO + bortezomib: a potential combination

- Significant micro-environment-mediated drug resistance to ATO in APL demonstrated by Indian group
- Synergistic effect of combination of ATO+bortezomib in ATO-sensitive and ATOresistant APL cells in vitro
- The mechanisms involved downregulation of NFkB pathway, increase in unfolded protein response, increase in ROS generation by blast cells, apoptosis
- PML-RARa is cleared by this combination through p62-dependent autophagy pathway

Realgar: oral ATO for relapsed patients

- 8 pts in first relapse, 4 pts in second relapse
- All pts achieved morphologic CR after first cycle (+/- ATRA or CHT) , but none mCR
- In second CR, 5 pts were treated with oral ATO as consolidation
- 11/12 pts reached long-lasting mCR

Table 1. Clinicopathologic features and outcome of 12 consecutive patients with relapsed-acute promyelocytic leukemia treated with oral As₂O₃

	Sex/		Previous	Time		Relaps	e	Oral	As₂O₃ thera	ру		Latest		
Patient no.	age, y	Status	induction treatment	from last CR, mo	Hb, g/L	WBC, × 10 ⁹ /L	Plat, × 10 ⁹ /L	Duration, d	Additional Rx	Result	Consolidation	PCR [†] (mo)	DFS, mo	Remarks
1*	M/23	R1	ATRA + Dauno	11	156	2.1	87	59	lda	CR	Ida		13	_
		R2	IV As ₂ O ₃ + Ida	10	140	2.5	25	76	ATRA	NR	_	+ (dead)		-
2*	M/33	R2	Dauno/IV	25	134	2.1	20	32	ATRA	CR	$As_2O_3 + ATRA$	- (18)	19+	-
			As ₂ O ₃ + Ida											
3*	F/13	R2	ATRA + IV As ₂ O ₃	12	86	1.2	15	30	ATRA	CR	$As_2O_3 + ATRA$	- (18)	19+	-
4	M/54	R1	ATRA + Dauno	100	85	34.8	81	40	Ida	CR	Ida	- (18)	18+	Mother: AML
5*	M/32	R1	ATRA +	22	145	2.4	177	33	NA	CR	lda	- (18)	18+	-
			Dauno + MP											
6	F/32	R1	ATRA + Dauno	12	122	0.8	84	51	NA	CR	lda	- (12)	18+	-
7*	F/45	R2	ATRA + Dauno/IV	17	112	1.9	50	37	ATRA	CR	$As_2O_3 + ATRA$	- (14)	17+	-
			As ₂ O ₃ + Ida											
8	F/65	R1	ATRA	16	72	2.8	141	28	NA	CR	$As_2O_3 + ATRA$	- (12)	15+	CRF due to DM on CAPD,
														Ida consolidation
														omitted due to CRF
9	F/18	R2	ATRA + Dauno/IV	12	101	1.9	180	28	ATRA	CR	$As_2O_3 + ATRA$	- (12)	14+	-
			$As_2O_3 + Ida$											
10*	F/18	R1	ATRA + Dauno	12	82	12.6	54	44	lda	CR	Ida	- (6)	9+	-
11*	M/45	R1	ATRA + Dauno	240	42	0.6	9	22	NA	CR	As ₂ O ₃	- (3)	7+	Ida consolidation omitted
														due to high cumulative
														doses of anthracycline
12	F/40	R1	ATRA + Ara-c	23	85	6.5	39	28	lda	CR	lda	- (3)	6+	CRHD, double valve rep

Au et al, Blood 2003

ATO for CNS relapsed patients

- 17 pts in CNS relapse
- Treatment 125 mL of 20% mannitol followed by the same therapy + 7 mg/mq ATO. Pts remained in bed for the entire procedure
- After induction, 3 cycles of consolidation for 14 days and then long-term maintenance
- No particular toxicity observed. No differences observed between CSF and blood levels
- 16/17 pts achieved CR after 1st cycle and 9 pts maintained mCR in the long-term

Wang et al, Blood 2014

✤ ATO is the most effective drug for relapsed pts (synergism with ATRA)

ATO is the first choice considered by ELN recommendations and NCCN guidelines

ATO as long-term maintenance warranted confirmation in large series of patients

Management of ATO complications

Complication	Management
Differentiation syndrome	 Temporary discontinuation only in case of severe APL differentiation syndrome Dexamethasone 10 mg BID until resolution of signs and symptoms
QTc prolongation	 In case of QTc prolongation above 500 ms, ATO discontinuation and daily monitoring Electrolytes correction (K+, Mg) Discontinuation of other concomitant medication that may prolong QTc
Leukocytosis	 Cytoreductive agent suggested if WBC increase up to 10 x 10⁹/l
Hepatic toxicity	 Liver enzymes should be monitored during therapy If grade > 2, ATO should be temporarily discontinued until normalization