Which is the best treatment for relapsed APL?

7th International Symposium on Acute Promyelocytic Leukemia, Rome, September 24 – 27, 2017

Eva Lengfelder

Department of Hematology and Oncology University Hospital Mannheim, University of Heidelberg, Germany

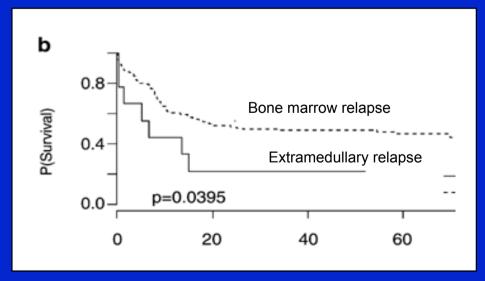
Disclosures of Eva Lengfelder

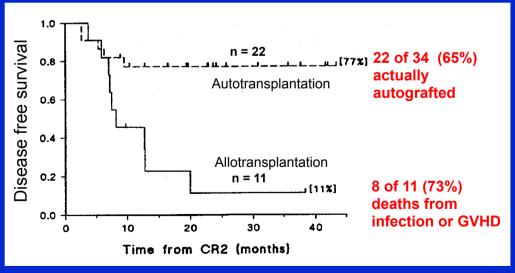
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
TEVA			+		+	+	
Novartis						+	

Treatment Options for Relapsed APL

- Arsenic trioxide (ATO)
- Chemotherapy
- Autologous transplantation
- Allogeneic transplantation
- Gemtuzumab ozogamicin
 - Synthetic retinoids

Outcome of APL Relapses in the Pre-ATO Era

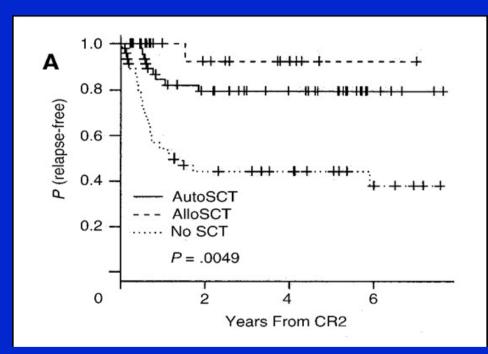

Results with chemotherapy:

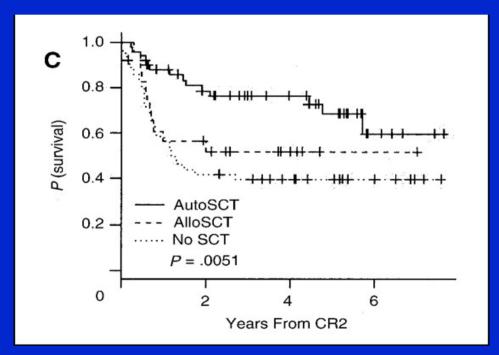

Complete remission: 90% (85 - 95)

Failure (death, refractory): approx. 10%

Survival after 2 to 3 years: 40 - 50%

Castagnola, Haematologica 1998; Fenaux, Leukemia 2000; Thomas, Leukemia 2000; Estey, Best Pract Res Clin Haematol 2003.

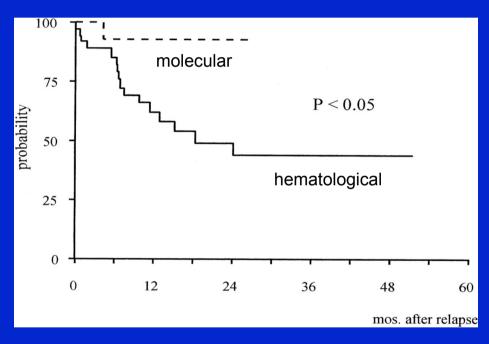



De Botton S et al., Leukemia 2006;20:35-41.

Thomas X et al, Leukemia 2000;14:1006-1013

Outcome of the 122 APL patients in second hematological complete remission according to postremission therapy

RFS OS


De Botton et al, JCO 2005;23:120-126

Hematopoietic stem cell transplantation for adults with acute promyelocytic leukemia in the ATRA era: EBMT Survey

Autologous Tx LFS TRM RI n % at 5y				Allogeneic Tx LFS TRM RI n % at 5y				RI	
CR1	149	69	10	21	CR1	144	68	20	13
CR2	195	51	16	37	CR2	137	59	24	17

Sanz et al, Bone Marrow Transplant 2007;39:461-469

Outcome of Patients in Molecular versus Hematological Relapse

Molecular failure (n=16; 5 events)

0.7

0.6

0.5

0.7

Hematological relapse (n=36; 24 events)

0.2

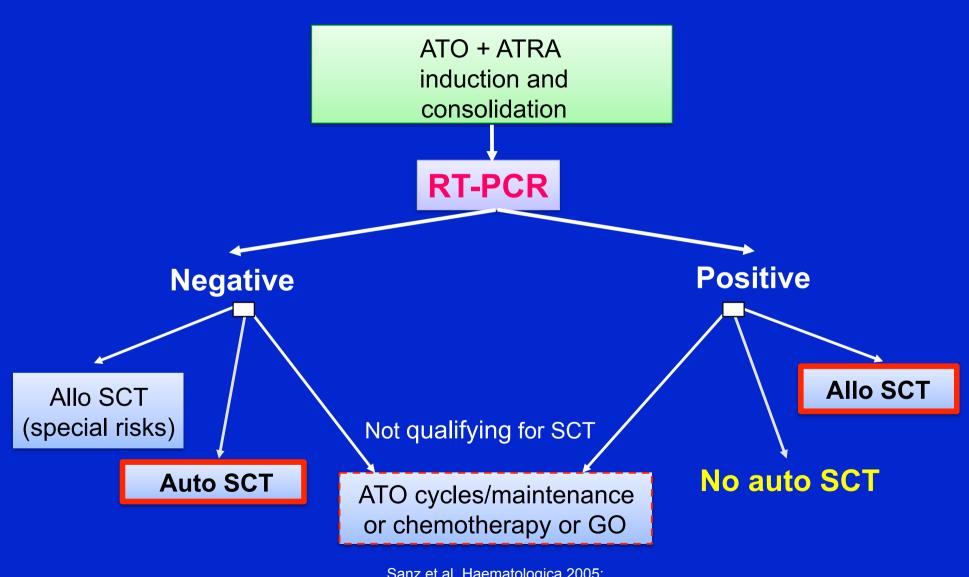
0.1

p=0.008

Years

Lo Coco et al, Blood 1999;94:2225-2229

Esteve et al, Leukemia 2007;21:446-452


Cumulative Results of Studies with ATO in Relapsed APL n = 304

number of patients

CR	263 (86%)
Molecular remission	up to 86%
Resistance	23 (7%)
Death during induction	21 (7%)
Days to CR (range of medians)	30 - 59
Estimated survival	50 to 81% (after 24 mo.)

Shen (1997), Soignet (1998, 2001), Niu (1999), Shen (2001), Kwong (2001), Leoni (2002), Ohnishi (2002), Lazo (2003), Raffoux (2003), Carmosino (2004), Shigeno (2005), Thomas (2006), Aribi (2007, Alimoghaddam (2011) – reviewed in Lengfelder et al, Leukemia 2012;26:433-442.

Treatment Options for APL Relapses after ATRA + Chemotherapy

Sanz et al, Haematologica 2005; ELN website. Available from: www. leukemia-net.org/content/.

Prospective / Retrospective European APL Relapse Registry (PROMYSE)

Inclusion criteria

- Patients with relapse of APL (first or later molecular, hematological, or extramedullary)
- Genetic confirmation of relapse
- Any treatment option for relapsed APL
- Use of uniform online CRFs mandatory

Evaluable (among 237 patients registered in 8 countries) n=155 pts treated with ATO in 1. relapse

n= 48 pts treated with Chemotherapy in 1. relapse

Salvage Therapy with ATO in 155 Patients with Genetically Confirmed First Relapse of APL

Type of relapse:

Hematological n = 104 (67%)

Molecular n = 40 (26%)

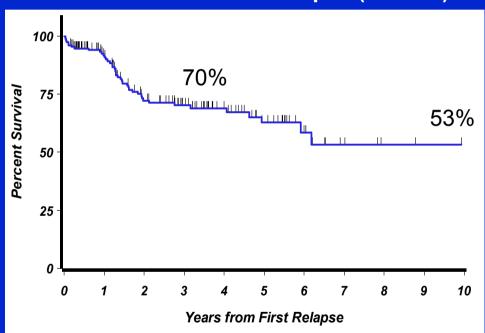
Extramedullary n = 11 (7%)

State-of-the-art front-line therapy:

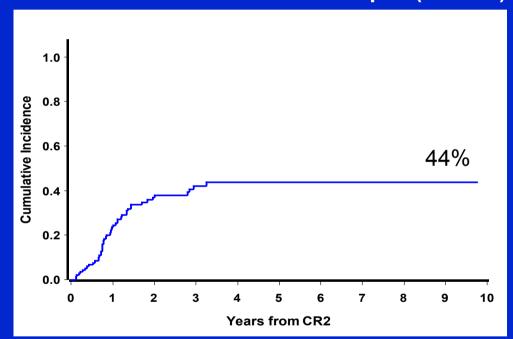
AIDA 60%

ATRA+anthrac±ara-C±etoposide 40%

ATO No patients


Age at relapse 44 years (range 4–81)

Median duration of first CR 1.7 years (range 31 days–9.5 years)


Sanz relapse risk score Low: 24%; intermediate 46%; high 29%

Outcome of Patients With First Relapse of APL after ATO-based Salvage Therapy

Overall survival after relapse (n = 155)

Cumulative incidence of 2nd relapse (n = 146)

Median follow up 3.2 years (range 1 day to 10 years)

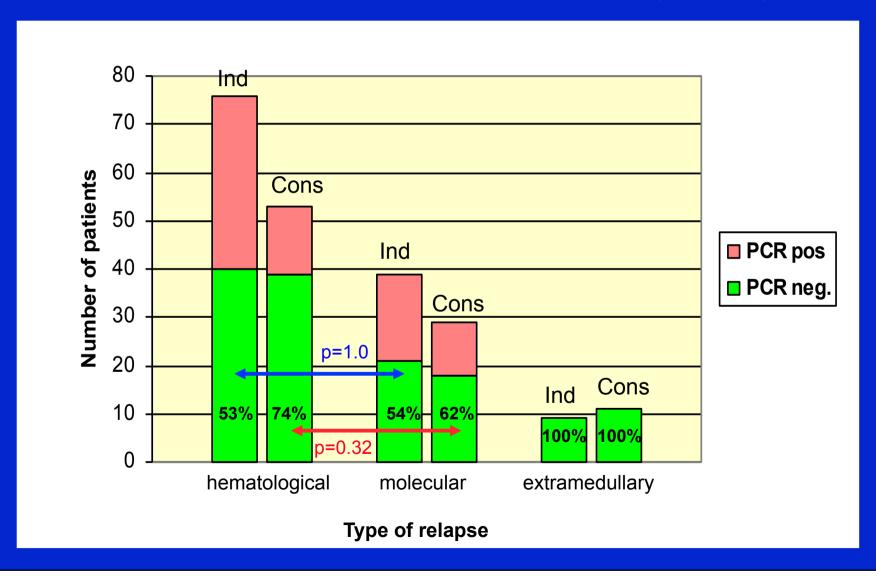
Lengfelder E, et al. Leukemia 2015;29:1084-1091

Comparison of Patients in Hematological Versus Molecular Relapse

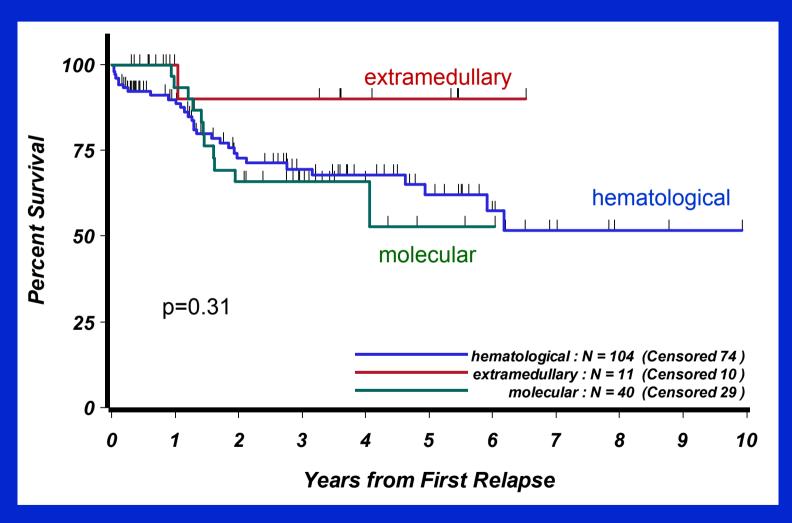
Pts' characteristics at first relapse	Hematological relapse (n=40)	Molecular relapse (n=104)	P - value
WBC (x10 ⁹ /L) Platelets (x10 ⁹ /L) Hb (g/dL) Bleeding Coagulopathy	median (range) 3.2 (0.5-112) 66 (8-479) 12.5 (5.5-17.2) 23% 34%	median (range) 4.4 (1.9-7.6) 187 (40-426) 13.8 (9.1-16.1) 0 0	0.04 <0.001 0.003 0.0008 0.001
APL diff. syndrome Leukocytosis	27% 39 %	0 0	<0.001 <0.001

Lengfelder E, et al. Leukemia 2015;29:1084-1091

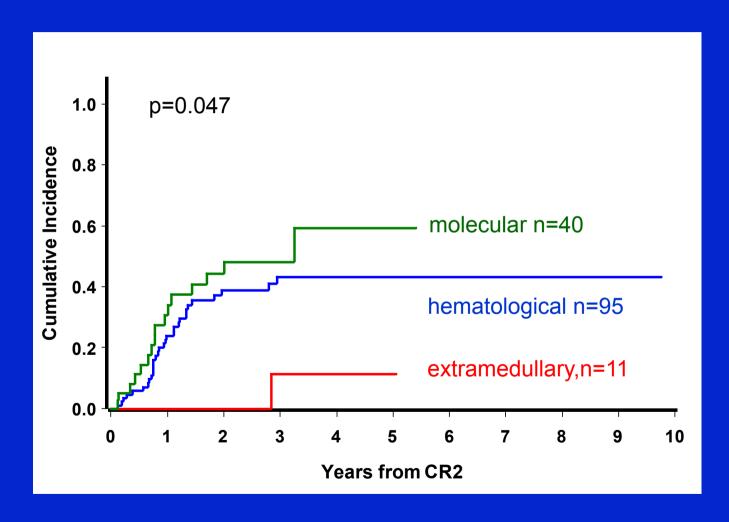
Response to ATO \pm ATRA (n = 155)


	Molecular	Hematological	Extramedullary
	relapse (n = 40)	relapse (n = 104)	relapse (n = 11)
CR (hematological)		91%	100%
Death	0	7%	
Resistance (hematological)		2%	
Molecular remission	62%	74%	100%
(after consolidation)	3270	1 170	10070

Induction death at day: 1, 3, 11, 19 (cerebral bleeding)

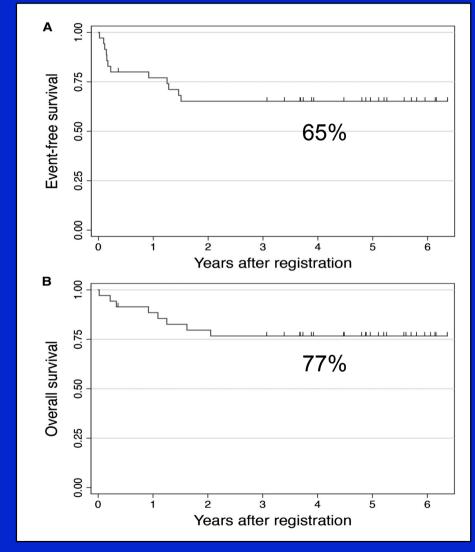

32, 33, 64 (2 infection, 1 not reported)

Lengfelder E, et al. Leukemia 2015;29:1084-1091


Rates of Molecular Remission after Induction and Consolidation with ATO (n=155)

Overall Survival After First Relapse according to Type of Relapse (n = 155)

Cumulative Incidence of Relapse According to Type of Relapse



Phase 2 study of ATO followed by auto-Tx for relapsed APL

n=35

OS

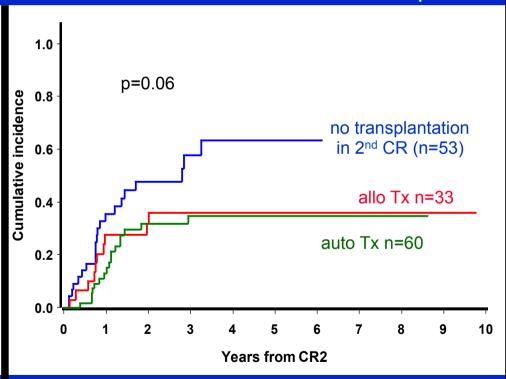
Yanada et al, Blood 2013;121:3095-3102

Overview on Published Results with Auto-Tx, Allo-Tx and without Tx in Relapsed APL in the ATO-Era

	Percent overall survival				
First author (year)	n	Auto Tx	Allo Tx	No Tx	Tlme
Kohno (2008)	28	76	46	-	at 4 y
Thirugnanam (2009)	37	100	-	39 (ATO-based)	at 5 y
Ramadan (2012)	31	-	62	-	at 4 y
Pemmaraju (2013)	40	69	49	40 (Chemo)	at 7 y
Yanada (2013) *	35	77	-	-	at 5 y
Fujita (2013)	57	83	76	75 (Chemo, Retinoid)	at 5 y
Holter-Chakrabarty (2014)	294	75	54	-	at 5 y
Lengfelder (2015)	155	77	79	59 (ATO or Chemo)	at 3 y
Ganzel (2016)	207	79	-	42 (ATO)	at 5 y
Yanada (2016)	141	93	-	-	at 4 y
Range (%)		69 - 100	46 - 76	39 - 75	

^{*} prospective

Post-Consolidation Therapy (n=148)

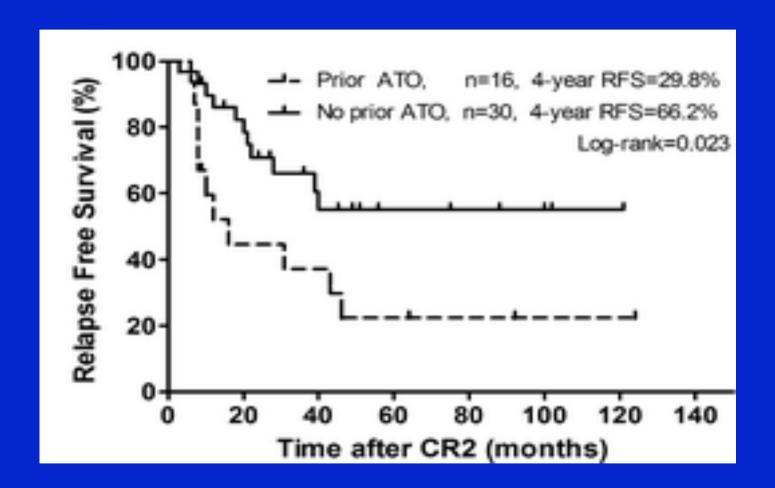

	Patients, n (%)	RT-PCR, %		Age ≥ 60 years, %
		Positive	Negative	
		Before tr	ansplant.	
Allogeneic transplant.	33 (22%)	52%	48%	0%
Autologous transplant.	60 (41%)	2%	98%	5%
		After con	solidation	
No transplant	55 (37%)	17%	83%	46%

Results after First Relapse According to Type of Post-Consolidation Therapy: Allogeneic or Autologous or No Transplantation

Overall survival after relapse

100 -

Cumulative incidence of 2nd relapse


Results of univariable and multivariable analysis of prognostic factors

	Overall survival			Leukemia- free survival		
Variable	Univariable P-value	Multivariable HR [95% CI]	Р	Univariable P-value	Multivariable HR [95% CI]	P
	N=148*			N=146		
Time in 1 st CR (≥1.5 y)</th <th>0.046</th> <th>0.410 [0.183;0.919]</th> <th>0.03</th> <th>0.004</th> <th>0.401 [0.210;0.764]</th> <th>0.006</th>	0.046	0.410 [0.183;0.919]	0.03	0.004	0.401 [0.210;0.764]	0.006
Tx vs. no Tx	0.039	0.326 [0.139;0.763]	0.01	0.017	0.363 [0.186;0.708]	0.003
Molecular CR (yes or no)	0.019	0.314 [0.129;0.764]	0.01	<0.0001	0.249 [0.125;0.496]	<0.0001

No significant prognostic impact: gender, initial WBC count ≤/>10000/µl, additional ATRA, type of relapse

*OS of patients alive after induction therapy

Relapse free survival in pts with first relapse of APL treated with ATO in dependence on frontline therapy with or without ATO

Lou et al, Ann Hematol 2014;93;941-948

Gemtuzumab Ozogamicin (GO) in Patients with Relapsed APL Results of the Literature

Patients in first to third relapse of APL: n= 33 (of 8 publications)

Single dose of GO: 3 to 9 mg/m²/day

Repetitions variable

→ Molecular CR in 91% (30/33 pts)

Most common side effects: myelosuppression, hepatotoxicity

Petti et al, 2001; Lo Coco et al, 2004; Schwarz et al, 2004; Tsimberidou et al, 2004; Takeshita et al, 2005; Aribi et al, 2007; Breccia et al, 2007; Tageja et al, 2009.

Conclusions

- Historical comparisons show a longer survival with ATO-based therapy in first relapse compared to chemotherapy (probably due to a lower relapse rate and a higher transplantation rate).
- Patients in molecular relapse benefit in the first time after start of therapy due to less side effects of ATO compared to patients in hematological relapse.
- The summary of data indicates higher cure rates after transplantation compared to no transplantation also in the ATO-era.
- In advanced relapses longer lasting remissions can still be induced.
 The curative potential of ATO seems to diminish with increasing number of relapses.
- The most suitable salvage therapy has to be chosen on the basis of the individual risks.

