Phenotipic Heterogeneity of Leukemias

Pier Giuseppe Pelicci

Milan, Italy

Universita' degli Studi di Milano

7th INTERNATIONAL SYMPOSIUM ON ACUTE PROMYELOCYTIC LEUKEMIA

Rome, September 24th-27th 2017

Cancer Stem Cells (AMLs, Breast Cancer):

- Have unlimited self renewal potential
- Divide both asymmetrically and symmetrically
- Symmetric divisions prevail
- Progenitors are continuously reprogrammed into CSCs

Cancer Stem Cells (AMLs, Breast Cancer):

• Altered self-renewal of CSCs is due to attenuated p53 signalling and activation of Myc

The p53:Myc expression signature is predictive of clinical outcome, independently of other known risk factors

(4 independent cohorts; 892 patients)

Symmetric divisions, progenitor reprogramming, extendend self-renewal:

- Maintenance and continuous expansion of the pool of Cancer Stem Cells: Asymmetric Divisions:
- Maintenance of biological heterogeneity Loss of p53 and Myc activation:
- General mechanism of self-renewal de-regulation in CSCs

- Is it generated by phenotypic adaptation of Leukemia Stem Cells to (micro)environmental signals?
- How genetic and non-genetic (epigenetic) mechanisms interact in the selection of best-fitted cancer phenotypes by environmental cues?

Model systems:

- Macrophage-activated CD4+ cells
- Obesity
- Nutrient deprivation

Effects of obesity on the self-renewal of Leukemia Stem Cells

Anna Giulia Sannarico, PhD

Luca Mazzarella MD-PhD

Driver mutations in AMLs are frequently found in rare subclones, including FLT3

Duplex Sequencing

(Schmitt MW et al., PNAS 2012; Kennedy SR et al., Nature Protocols 2014)

VAF: 0,001%-5%

	number of mutations per gene		
Mutated genes	UD6	UD5	TO1 primary
NRAS	1	/	/
FLT3	1	1	/
IDH2*	3	1	/
TP53§	7	2	3
BRD4*	2	1	/
U2AF2*	1	1	/
DNMT3A	1	/	/
ASXL1	1	3	2
TET2	3	7	/
КІТ	2	/	/
EZH2	1	3	/
GNAQ	1	/	/
JAK2	2	5	/
AXIN1	/	1	/
CEBPA	/	1	/
RUNX1	/	1	1
EGFR	/	1	/
PER1	/	/	2
TOTAL	26	28	8

* exact same mutation identified in both patients in UD6 and UD5
§ exact same mutation identified in both patients in UD6, UD5 and TO1

Obesity increases the UPR response to FLT3-ITD induced ER stress

Gene	SD (TPM)	HFD (TPM)
Sqle	38,56	46,76
Hmgcr	48,20	65,97
Hmgcs1	27,43	35,89
Srebf2	120,62	147,23
Gene	WT (TPM)	FLT3 (T PM)
Me2	52,16	83,99
Sqle	23,71	38,56
Hmgcs1	21,84	27,43
Scd2	93,40	188,13
Fasn	53,06	80,04
Slc16a1	24,29	50,39
Srebf2	124,44	120,62

Cholesterol metabolism

Modest effects of BSO or KRIBB1 single-agents; >95% cell death upon combination

Conclusions

- Obesity activates the oncogenic potential of FLT3-ITD by releasing FLT3-ITD induced ER stress (through insulin/IGF1 signaling)
- This adaptive response to FLT3-ITD induced ER stress creates selective vulnerabilities of FLT3-ITD AMLs, unraveled by inhibition of chaperone activity or GSH depletion

Effects of nutrient deprivation on Leukemia Stem Cells

- The <u>tumor micro-environment</u> is characterized by a chronic state of nutrient and oxygen deprivation
- <u>Nutrient scarcity</u> is among the critical environmental conditions driving phenotypic plasticity

Luca Mazzarella, MD-PhD

Rani Pallavi, PhD Saverio-Minucci's Group

Early time points: CR markedly reduces leukemic burden

Later time points: CR-treated Leukemias re-expand leading to leukemia associated mouse death

Transcriptional rewiring in CR

Depleted in CR

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION KEGG_MAPK_SIGNALING_PATHWAY KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY

Enriched in CR

KEGG_PPAR_SIGNALING_PATHWAY KEGG_PARKINSONS_DISEASE KEGG_SPLICEOSOME KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION KEGG_RNA_DEGRADATION KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS KEGG_AMINOACYL_TRNA_BIOSYNTHESIS KEGG_PYRIMIDINE_METABOLISM KEGG_HUNTINGTONS_DISEASE **KEGG OXIDATIVE PHOSPHORYLATION**

KEGG RNA POLYMERASE

KEGG_PROTEASOME KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION KEGG_CELL_ADHESION_MOLECULES_CAMS KEGG_RIBOSOME KEGG_ALZHEIMERS_DISEASE KEGG_CITRATE_CYCLE_TCA_CYCLE

Increased transcription of oxydative phosphorylation genes and oxydative metabolism

The insulin/IGF1R inhibitor OSI-906, but not Rapamycin, mimics nutrient deprivation and synergizes with the LSD1 inhibitor

Inhibition of phenotypic adaptation (to nutrient deprivation) eradicates leukemias

Working hypotheses

Phenotypic (non-genetic) adaptation to the changing tumor micro-environment:

- is critical for tumor development
- is influenced by the specific genetic make-up of each tumor
- can be exploited to develop innovative anticancer strategies.