

The role of liposomal doxorubicin in DLBCL lymphomas

Michele Spina Aviano

Disclosures of *Michele Spina*

	Research				Speakers	Advisory	
Company name	support	Employee	Consultant	Stockholder	bureau	board	Other
TEVA					X	X	
Mundipharma					x	x	
Menarini	x		x		х	x	
Roche					х		
Takeda					х		
Janssen-Cilag					x	x	
Gilead					x	x	
СТІ					x	x	
Servier					x	x	

Introduction

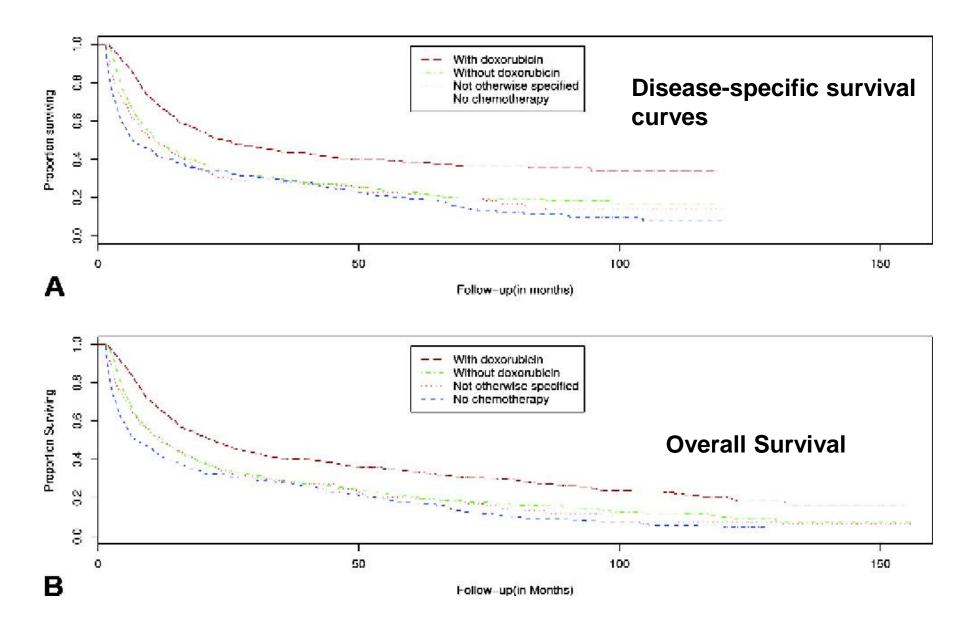
R-CHOP is the gold standard for patients with DLBCL

Doxorubicin is a key drug for the treatment of aggressive NHL

The presence of cardiac comorbidities contraindicate its use, specially in elderly patients

Comorbidities

Diseases	<60 yrs	60-64 yrs	65-74 yrs	>75 yrs
Hypertension	8.7	34.3	43.5	53.9
Arthrosis/Arthritis	5.5	31.5	42	60
Osteoporosis	2.1	12.3	20.3	35.1
Diabetes	1.6	11.3	14.9	20.3
COPD	1.1	7.8	11.3	20
Heart disease	0.6	4.8	8.8	17
Neurological disease	2.6	6.1	7	13.2
Allergies	12.1	9.2	9.4	9.1


Demographic and Clinical Characteristics of Patients with Advanced DLBCL by Chemotherapy Group

Treatment received

	Speci	ified chei	motnera	py						
	With		Witho	out	СТ		No		Total	
	doxor	ubicin	doxo	rubicin	NO:	S	СТ			P
	No.	%	No.	%	No.	%	No.	%	No. %	
All pts	768	33	468	20	261	11	829	35	2326 100	<0.001
Age, y										
65-69	174	22	90	19	45	17	77	9	386 16	
70-74	251	32	110	23	60	23	188	22	609 26	
75-79	206	26	138	29	77	29	196	23	617 26	
80-84	105	13	87	18	45	17	171	20	408 17	
>85	32	4	43	9	34	13	197	23	306 13	<0.001

Patients who received doxorubicin survived more than twice as long (24.4 months) as patients who did not receive doxorubicin (11.2 months).

Survival was no better among patients who received chemotherapy without doxorubicin than among patients who received no chemotherapy.

ORIGINAL ARTICLE: CLINICAL

The effects of cardiovascular disease on the clinical outcome of elderly patients with diffuse large B-cell lymphoma

Huei-Ting Tsai¹, Ruth M. Pfeiffer¹, Joan Warren², Wyndham Wilson³* & Ola Landgren^{3,4}

¹Biostatistics Branch, Division of Cancer Epidemiology and Genetics, ²Division of Cancer Control and Population Sciences, ³Metabolism Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA and ⁴Myeloma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Table II. Risk of cardiovascular events among patients with DLBCL treated with doxorubicin-based therapy compared to controls, by selected preexisting medical conditions for 6 months and 3 years of follow-up.

	Congestive heart fai	lure/cardiomyopathy	Acute myocar	Acute myocardial infarction	
	6 months ¹ : HR (95% CI)	3 years [†] : HR (95% CI)	6 months?: HR (95% CI)	3 years*: HR (95% CI)	
Doxorubicin-based therapy, overall	3.42 (3.02, 3.86)	2.45 (2.26, 2.67)	3.29 (2.53, 4.28)	1.72 (1.44, 2.04)	
Doxorubicin-based therapy, history of any cardiovascular disease					
No	6.62 (5.31, 8.26)**	3.61 (3.20, 4.08)**	5.17 (3.57, 7.48)*	2.07 (1.64, 2.62)*	
Yes	2.63 (2.26, 3.07)**	1.90 (1.70, 2.12)**	2.33 (1.59, 3.43)*	1.42 (1.09, 1.84)*	
Doxorubicin-based therapy, history of diabetes					
No	4.39 (3.74, 5.16)**	2.93 (2.65, 3.25)**	4.11 (2.92, 5.78)	1.93 (1.55, 2.41)	
Yes	2.51 (2.06, 3.05)**	1.92 (1.68, 2.19)**	2.51 (1.65, 3.81)	1.43 (1.07, 1.90)	
Doxorubicin-based therapy, history of hypertension	W 0 W				
No	6.70 (4.81, 9.33)**	3.69 (3.03, 4.59)**	4.09 (2.06, 8.12)	1.71 (1.10, 2.65)	
Yes	3.14 (2.74, 3.59)**	2.29 (2.10, 2.51)**	3.15 (2.37, 4.19)	1.72 (1.43, 2.08)	
Doxorubicin-based therapy, history of hyperlipidemia					
No	3.92 (3.14, 4.88)	2.51 (2.17, 2.91)	5.02 (3.10, 8.14)	1.89 (1.38, 2.59)	
Yes	3.22 (2.77, 3.74)	2.43 (2.21, 2.68)	2.87 (2.09, 3.92)	1.65 (1.35, 2.04)	

DLBCL, diffuse large B-cell lymphoma; Cl, confidence interval.

^{*}p-Value from likelihood ratio test for heterogeneity across the strata < 0.05; **p-value from likelihood ratio test for heterogeneity across the strata < 0.001.

^{&#}x27;Adjusted bazard ratios (HRs) were estimated from models using age as the time metric, adjusted for sex, history of cardiovascular disease, diabetes, hypertension, hyperlipidem in and SEER registry. The 3 years of follow-up models were additionally adjusted for race, which was not significant in the 6 months models.

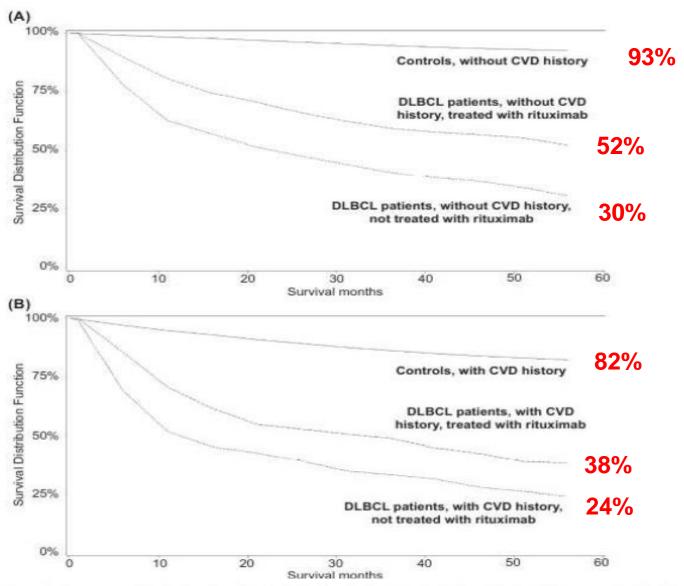
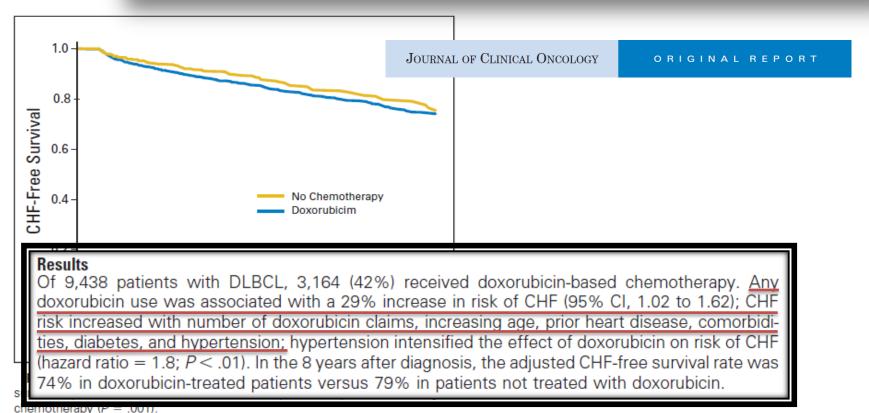


Figure 1. (A) Survival in patients with DLBCL in advanced stage by use of rituximab and controls, all groups without a history of cardiovascular disease (CVD). (B) Survival in patients with DLBCL in advanced stage by use of rituximab and controls, all groups with a history of CVD. For those without a history of any CVD the estimates of 5-year survival were 92.7% for controls, 52.4% for patients with rituximab and 30.4% for patients who did not receive rituximab. Among those with a history of any CVD the estimates of 5-year survival were 82.4% for controls, 38.1% for patients with rituximab and 24.0% for patients who did not receive rituximab.

Late Toxicity of Treatment

Excess mortality

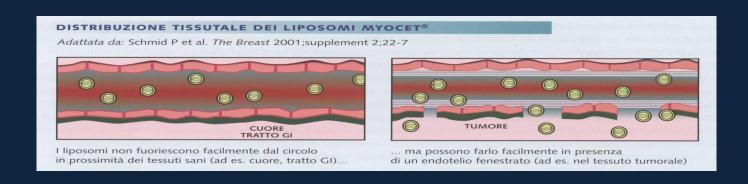

- secondary malignancies
- cardiac disease

Excess morbidity / decreased Q.O.L

- cardiac disease
- pulmonary disease
- infertility
- fatigue

Doxorubicin, Cardiac Risk Factors, and Cardiac Toxicity in Elderly Patients With Diffuse B-Cell Non-Hodgkin's Lymphoma

Dawn L. Hershman, Russell B. McBride, Andrew Eisenberger, Wei Yann Tsai, Victor R. Grann, and Judith S. Jacobson



HNL and cardiotoxicity The «exit» strategies

- 1. Design of chemotherapy regimens with reduced drug doses;
- 2. Addition of cardioprotectors;
- 3. Use of different dose schedules;
- 4. Development of doxorubicin analogs with an assumed improvement in the safety profile

Liposomal doxorubicin in lymphoma

- Liposomes reach elevated concentrations in the reticuloendothelial system
- In respect to conventional doxorubicin:
- — ↑ greater captation in liver, spleen, lymphnodes
- – ↓ smaller captation in miocardium and GI mucosa
- \Rightarrow no added toxicity

Advantages of NPLD vs. Conventional Anthracyclines

	Doxorubicin	Epirubicin	NPLD
Dose regimen	60-75 mg/m ²	60-120 mg/m ²	60-75 mg/m ²
Max. cardiac cumulative dose (5% CHF risk)	450 mg/m ²	900 mg/m ²	>1260 mg/m²
Common cumulative used dose in early stage	300-360 mg/m ²	450 - 600 mg/m ²	_

Kirti et al, JCO:3, 818-826 1985

Chan et al, J Clin Onco 17: 2341-2354, 1999 Gennari et al, Br J Cancer; 90, 962-967, 2004 Batist G et al. *J Clin Oncol* 2001; 19:1444-54

Harris L, et al. Cancer. 2002;94:25-36

Clinical studies

- In HIV patients
- In elderly patients
- In cardiopathic patients
- In non cardiopathic patients

Clinical studies

In HIV patients

Pegylated Liposomal Doxorubicin, Rituximab, Cyclophosphamide, Vincristine, and Prednisone in AIDS-Related Lymphoma: AIDS Malignancy Consortium Study 047

Alexandra M. Levine, Ariela Noy, Jeannette Y. Lee, Wayne Tam, Juan Carlos Ramos, David H. Henry, Samir Parekh, Erin G. Reid, Ronald Mitsuyasu, Timothy Cooley, Bruce J. Dezube, Lee Ratner, Ethel Gesarman, and And Tulpule

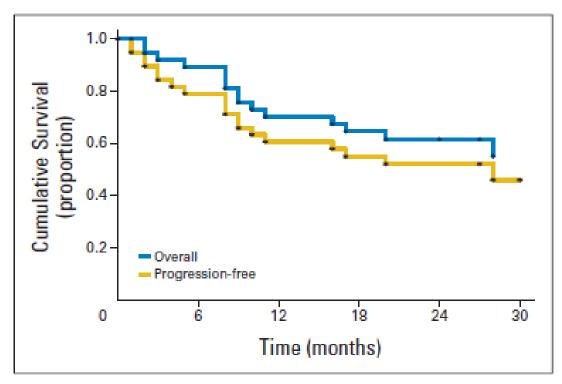
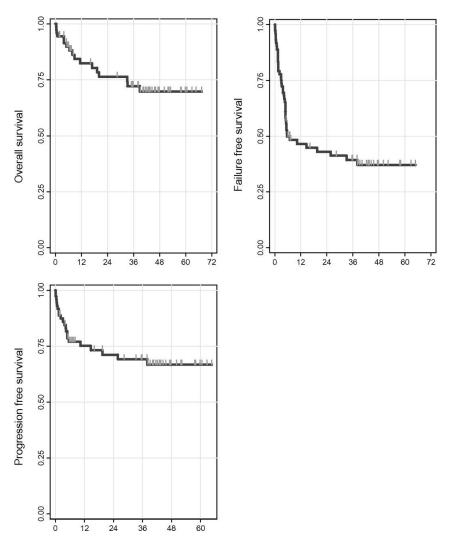


Fig 1. Overall and progression-free survival in 40 evaluable patients.

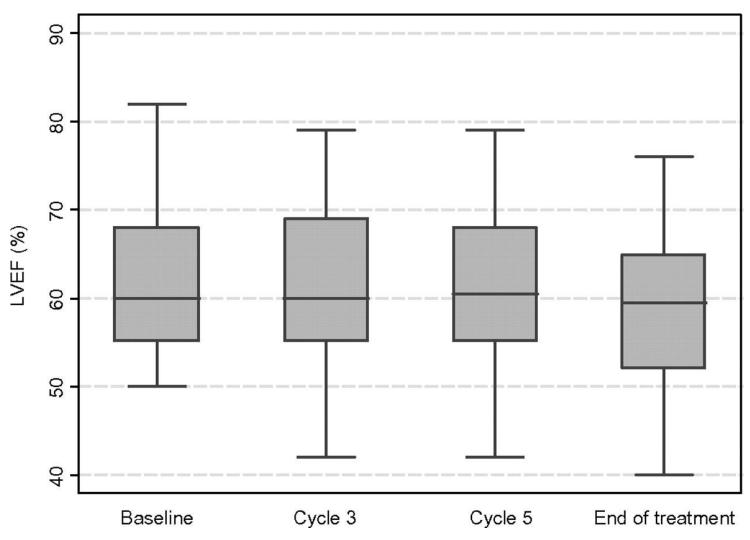
Clinical studies


In elderly patients

original article

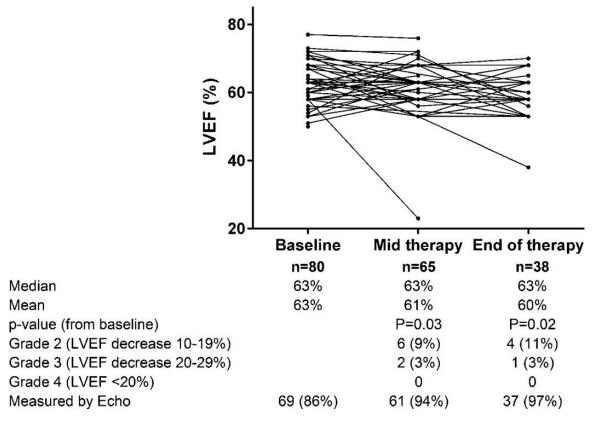
Nonpegylated liposomal doxorubicin (Myocet™) combination (R-COMP) chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL): results from the phase II EUR018 trial

S. Luminari¹, A. Montanini¹, D. Caballero², S. Bologna³, M. Notter⁴, M. J. S. Dyer⁵, A. Chiappella⁶, J. Briones⁷, M. Petrini⁸, A. Barbato⁹, L. Kayitalire⁹ & M. Federico^{1*}

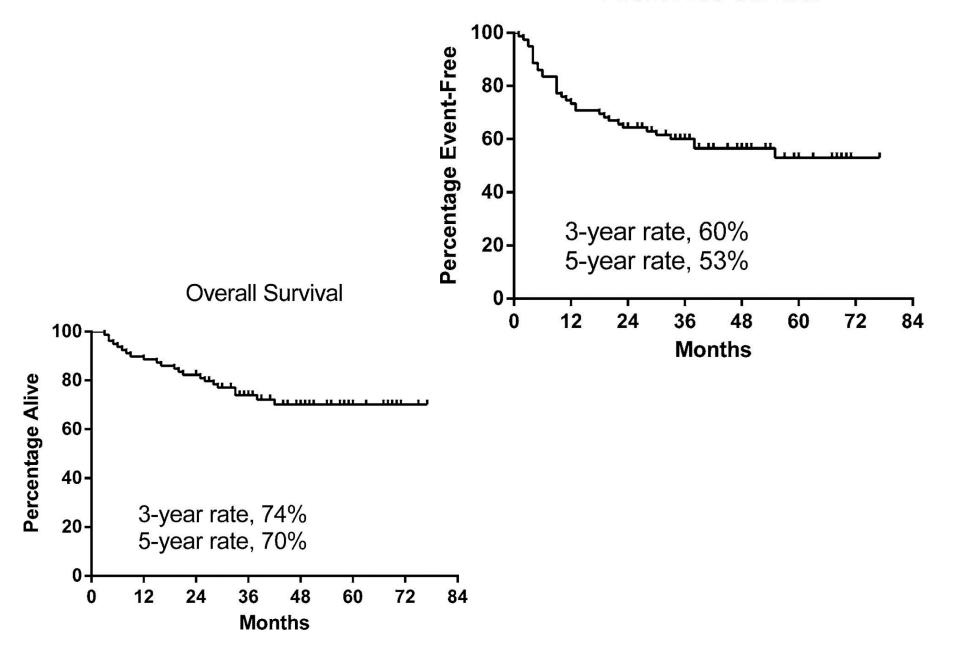

Kaplan–Meier analysis of the probability of survival.

S. Luminari et al. Ann Oncol 2010;21:1492-1499

LVEF (%) from baseline to the end of treatment with R-COMP.



Original Study


Pegylated Liposomal Doxorubicin Replacing Conventional Doxorubicin in Standard R-CHOP Chemotherapy for Elderly Patients With Diffuse Large B-Cell Lymphoma: An Open Label, Single Arm, Phase II Trial

Yasuhiro Oki, ¹ Michael S. Ewer, ² Daniel J. Lenihan, ³ Michael J. Fisch, ⁴ Fredrick B. Hagemeister, ¹ Michelle Fanale, ¹ Jorge Romaguera, ¹ Barbara Pro, ¹ Nathan Fowler, ¹ Anas Younes, ¹ Alan B. Astrow, ⁵ Xuelin Huang, ⁶ Larry W. Kwak, ¹ Felipe Samaniego, ¹ Peter McLaughlin, ¹ Sattva S. Neelapu, ¹ Michael Wang, ¹ Luis E. Fayad, ¹ Jean-Bernard Durand, ² M. Alma Rodriguez ¹

Clinical Lymphoma, Myeloma & Leukemia, Vol. 15, No. 3, 152-8

Event-Free Survival

Clinical studies

In cardiopathic patients

Hematological Oncology

Hematol Oncol 2007; 25: 198-203

Published online 25 July 2007 in Wiley InterScience (www.interscience.wiley.com) **DOI**: 10.1002/hon.827

Research Article

Liposome-encapsulated doxorubicin in combination with cyclophosphamide, vincristine, prednisone and rituximab in patients with lymphoma and concurrent cardiac diseases or pre-treated with anthracyclines

Luigi Rigacci*, Silvia Mappa, Luca Nassi, Renato Alterini, Valentina Carrai, Franco Bernardi and Alberto Bosi Department of Hematology, Careggi Hospital and University of Florence, Italy

Table 2. Characteristics of patients with cardiac comorbidity or pre-treated patients

Patients	Cardiac disease			Þ	
		Baseline	3rd cycle	End of study	
	Hypertensive cardiomyopathy	54	60	57	n.s.
2	CÁD	58	65	60	n.s.
3	Hypokinesia	50	20*	n.e.	n.e.
4	CAD	45	59	60	n.s
5	Hypokinesia	45	42	47	n.s
6	Hypertensive cardiomyopathy	60	58	63	n.s
7	Hypertensive cardiomyopathy	60	61	60	n.s
8	CÁD	69	64	69	n.s
9	Hypertensive cardiomyopathy	50	58	53	n.s
10	CAD	44	55	60	n.s
П	Hypertensive cardiomyopathy	57	60	58	n.s
12	Hypertensive cardiomyopathy	65	60	60	n.s
13	CAD	40	38	40	n.s.
14	Pre-treated	63	60	60	n.s.
15	Pre-treated	61	70	60	n.s.
16	Pre-treated	66	61	63	n.s.
17	Pre-treated	60	65	60	n.s.
18	Pre-treated	70	60	60	n.s.
19	Pre-treated	60	58	58	n.s.
20	Pre-treated	60	60	65	n.s.
21	Pre-treated	59	70	65	n.s.

LVEF, Left Ventricular Ejection Fraction; CAD, Coronary Artery Disease; n.e., not evaluated; n.s., not significant. *Congestive heart failure after 1st cycle.

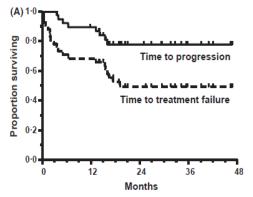
ORIGINAL ARTICLE: CLINICAL

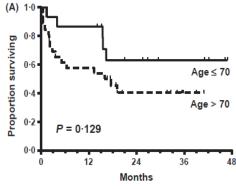
R-COMP 21 for frail elderly patients with aggressive B-cell non-Hodgkin lymphoma: A pilot study

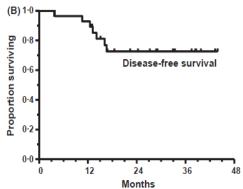
GIUSEPPE VISANI¹, FELICETTO FERRARA², FRANCESCO ALESIANI³, SONIA RONCONI⁴, MASSIMO CATARINI⁵, FRANCESCA D'ADAMO¹, BARBARA GUIDUCCI¹, DANIELE BERNARDI⁶, SARA BARULLI¹, PIERPAOLO PICCALUGA⁷, MARCO ROCCHI⁸, & ALESSANDRO ISIDORI¹

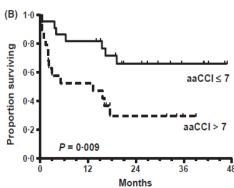
¹Hematology and Hematopoietic Stem Cell Transplant Center, San Salvatore Hospital, Pesaro, Italy, ²Division of Hematology and Stem Cell Transplantation Unit, Cardarelli Hospital, Naples, Italy, ³Onco-Hematology Unit, Bartolomeo Eustacchio Hospital, San Severino Marche, Italy, ⁴Division of Oncology and Diagnostics, Ospedale G.B. Morgagni, Forli, Italy, ⁵Department of Internal Medicine, General Hospital of Macerata, Italy, ⁶Division of Medical Oncology, Civil Hospital, Vittorio Veneto, Italy, ⁷Institute of Hematology and Medical Oncology, "L. & A. Seràgnoli", University of Bologna, Bologna, Italy, and ⁸Institute of Biomathematics, Urbino University, Urbino, Italy

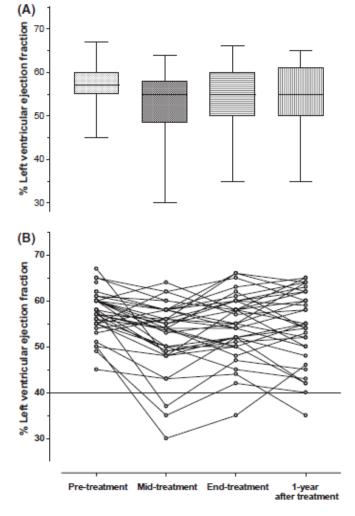
(Received 21 November 2007; accepted 7 March 2008)


Table II. List of comorbidities.

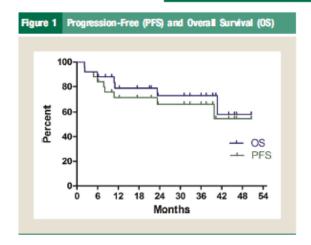

Diabetes mellitus	7
Hypertension controlled by medication	10
Chronic obstructive bronchopneumonia	4
Myocardiopathy	1
Coronary heart disease	3
Atrial fibrillation or other cardiac arrhythmias	3
Congestive heart failure	2
Peptic ulcer	3
Myasthenia gravis	1
Rheumatic polymyalgia	1
Antiphospholipid syndrome	1


Of the remaining 19 patients, two presented a congestive heart failure (NYHA 3) after 1 and 3 cycles of R-COMP, respectively, with a decrease of 20% of the left ventricular ejection fraction (LVEF). They partially recovered after medical therapy and were shifted to receive an anthracycline-free regimen while in CR after R-COMP. There was no significant difference between LVEF at baseline, after the third cycle, and at the end of study in the residual 17 patients.


Biweekly rituximab, cyclophosphamide, vincristine, non-pegylated liposome-encapsulated doxorubicin and prednisone (R-COMP-14) in elderly patients with poor-risk diffuse large B-cell lymphoma and moderate to high 'life threat' impact cardiopathy


Gaetano Corazzelli, Ferdinando Frigeri, Manuela Arcamone, Anna Lucania, Maria Rosaria Villa, Emanuela Morelli, Alfonso Amore, Gaetana Capobianco, Antonietta Caronna, Cristina Becchimanzi, Francesco Volzone, Gianpaolo Marcacci, Filippo Russo, Rosaria De Filippi, Lucia Mastrullo and Antonio Pinto

Original Study


Nonpegylated Liposomal Doxorubicin as a Component of R-CHOP Is an Effective and Safe Alternative to Conventional Doxorubicin in the Treatment of Patients With Diffuse Large B-Cell Lymphoma and Preexisting Cardiac Diseases

Sarah Rohlfing,¹ Matthias Aurich,² Tilman Schöning,³ Anthony D. Ho,¹ Mathias Witzens-Harig¹

Table 2 Preexisting Cardiac Diseases	
Variable	n
Heart Failure	14
Coronary Heart Disease/Ischemic Cardiopathy	10
Cardiac Arrhythmia	10
History of Anthracyclines and Breast Radiation	2
Dilated Cardiomyopathy	2
Cerebral Stroke/Transient Ischemic Attack	2
Pulmonary Hypertension With Reduced RVEF	1
Aortic Valve Replacement	1
Distinct LV Hypertrophy With Aortic Stenosis	1

Abbreviations: LV = left ventricular; RVEF = right ventricular ejection fraction.

Table 3 Median LVEF Before and After Therapy With NPLD						
LVEF Before LVEF After						
All Patients	51%	50%				
Patients With Normal LVEF (≥55%)	60% (55%-65%)	57% (40%-61%)				
Patients With Reduced LVEF (<55%)	45.5% (35%-53%)	46.5% (15%-56%)				

HEART01

MULTICENTRE PHASE II STUDY WITH RITUXIMAB, CYCLOPHOSPHAMIDE, NPL-DOXORUBICIN, VINCRISTINE, PREDNISONE (R-COMP) IN CARDIOPATHIC PATIENTS WITH DIFFUSE LARGE BCELL LYMPHOMA

EUDRACT NUMBER 2009-012143-42

PI: Michele Spina (Aviano)

A phase II multicentre study with R-COMP in cardiopathic pts with DLBCL

- Histologically proven CD20 + DLBCL
- Clinical stages I IV
- Age ≥ 18 years
- Previously untreated patients
- "Cardiopathy"(doxorubicin not allowed)

DEFINITION OF CARDIOPATHY

LVEF < 50%

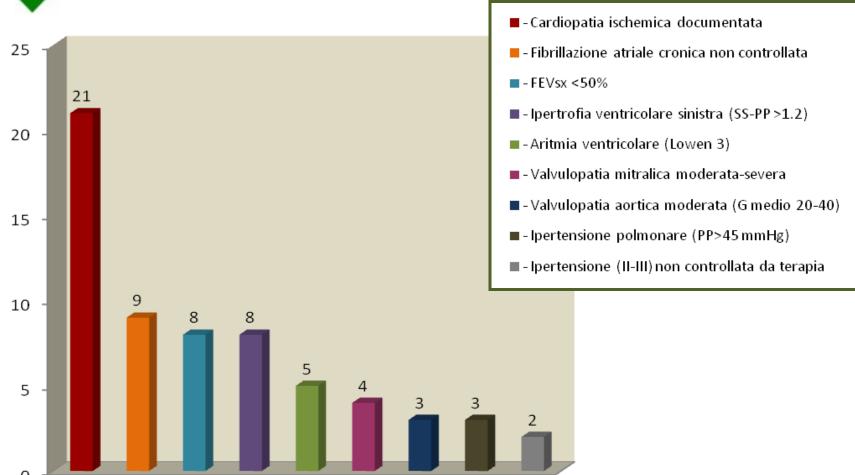
Left Ventricular Hypertrophy (PP-SS>1.2)

Moderate/severe uncontrolled hypertension

Ischemic cardiopathy

Ventricular arrhythmias (Lown 3)

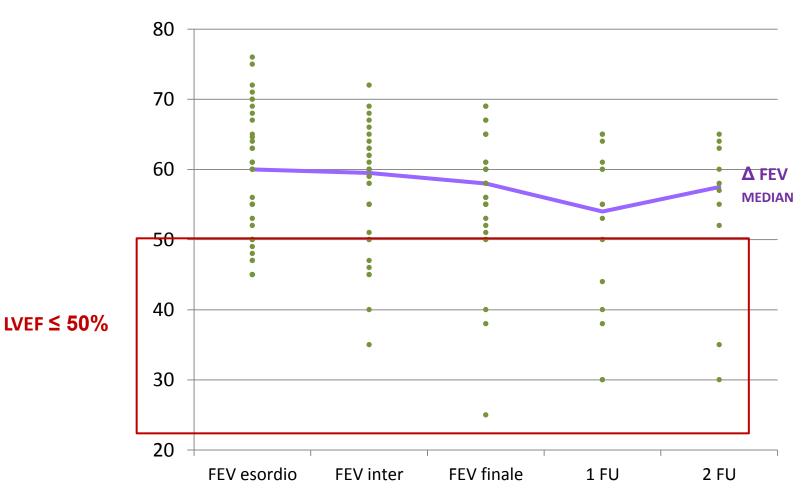
Chronic atrial fibrillation


Pulmonary Hypertension (PP > 45 mmHg)

Moderate/severe mitral valvulopathy

Moderate aortic valvulopathy (G 20-40)

CARDIAC DISEASES (N=63*)



* Patients with two or more cardiopathies = 8 cases

LVEF

Baseline	Intermediate	Final	1FU	2FU
49	38	34	21	13

CARDIAC EVENTS

	N (%)
LVEF reduction	2 (33%)
Troponine increase	2 (33%)
Hearth failure	1 (17%)
Cardiac arrest	1 (17%)

OUTCOME (N=51)

	N	%
Alive	32	63
Dead	19	37

Causes of death	N
Tossicity	6
Sepsis	2
Haemorrhage	1
Cardiac arrest	1
Heart failure	1
Renal failure	1
NHL	9
Secondary tumor	1
COPD	1
Unknown	2
Total	19

3-yr OS: 54% (CI95% 34-70%) 3-yr PFS: 40% (CI95% 25-54%)

Conclusions

The substitution of conventional doxorubicin with non pegilated liposomal doxorubicin in the R-CHOP regimen is a safe and active option for patients with DLBCL presenting with concomitant moderate/severe cardiac disorders.

Clinical studies

In non cardiopathic patients

Available online at www.sciencedirect.com

ScienceDirect

Clinical Trial

Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma A randomised phase-III study from the Austrian Cancer Drug Therapy Working Group [Arbeitsgemeinschaft Medikamentöse Tumortherapie AGMT] (NHL-14)

Michael A. Fridrik ^{a,*}, Ulrich Jaeger ^b, Andreas Petzer ^c, Wolfgang Willenbacher ^d, Felix Keil ^e, Alois Lang ^f, Johannes Andel ^g, Sonja Burgstaller ^h, Otto Krieger ⁱ, Willi Oberaigner ^j, Kurt Sihorsch ^k, Richard Greil ¹

a Department of Internal Medicine 3 — Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria

b Medical University Vienna, Department of Medicine I, Hematology and Hemostaseology, Austria

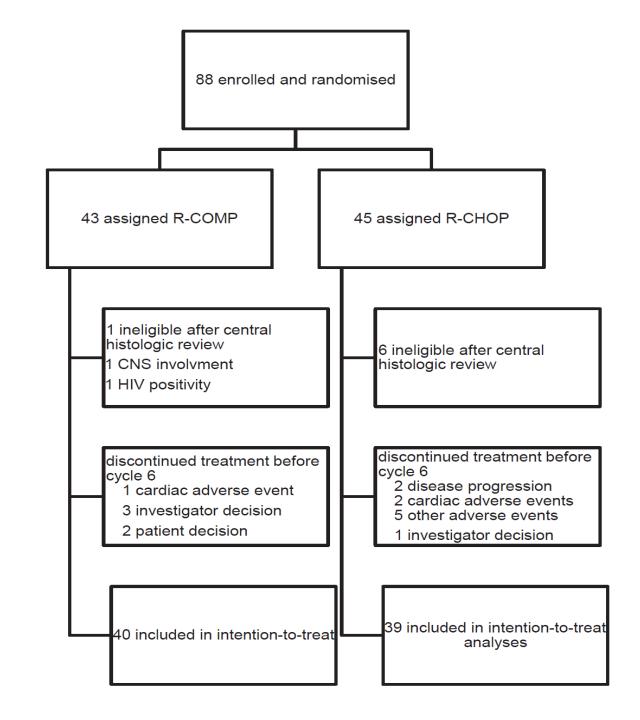
^c Barmherzige Schwestern Hospital Linz, Department of Medical Oncology, Hematology and Gastroenterology, Austria

^d University of Innsbruck, Internal Medicine V: Hematology-Oncology, Austria

e Hanusch Hospital Vienna, Department of Medicine III: Hematology Oncology, Austria

f LKH Feldkirch, Department of Internal Medicine, Austria

g LKH Stevr. Department of Internal Medicine II. Austria


h Klinikum Wels-Grieskirchen, Department of Internal Medicine IV, Austria

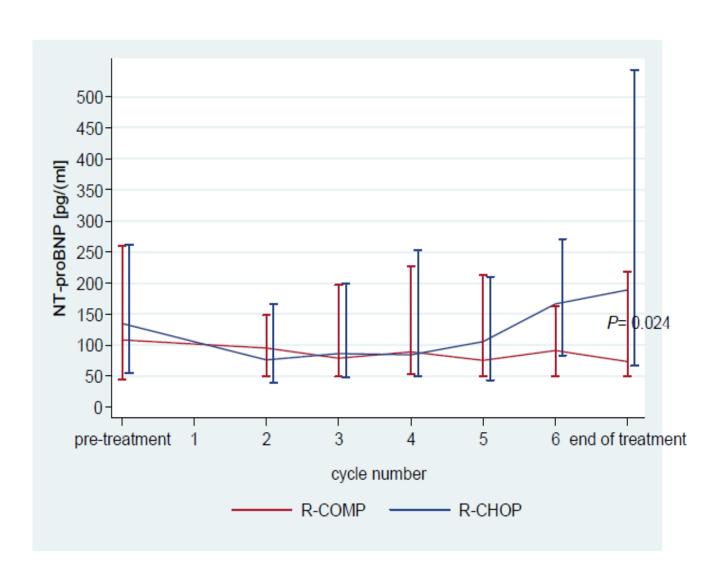
i Elisabethinen Hospital Linz, Department of Internal Medicine I, Austria

j TILAK, Clinical Epidemiology, Austria

k AKH Linz, Department of Internal Medicine I, Austria

Paracelsus University Hospital, Salzburg, Department of Medicine III, Austria

Cardiotoxicity


LVEF values at the beginning of treatment cycles and 4–8 weeks after the last cycle.

	R-C	R-COMP			НОР		
	n	mean %	SD %	n	mean %	SD %	P-value
Pre-treatment	40	64.7	6.8	38	62.5	7.3	0.17
Cycle 2	33	63.9	7.2	29	61.9	7.8	0.30
Cycle 3	28	63.1	6.9	27	64.4	7.6	0.52
Cycle 4	31	64.1	6.1	24	61.9	6.3	0.20
Cycle 5	28	63.6	5.4	24	63	6.2	0.79
Cycle 6	24	63.8	5.9	24	62.8	6.9	0.58
End of treatment	34	61.6	6.2	30	59.9	10.2	0.42
All values	178	63.3	6.3	158	62.2	7.8	0.167
LVEF < 50%	10				31		< 0.001

Non-cardiac toxicities

Toxicity	R-CHOP	R-COMP	P value
SAEs	40%	26%	0.029
Infections	28%	15%	0.012
Stomatitis	46%	15%	0.022
Serum creatinine level >N	30%	8%	0.021

Median NT-proBNP levels during therapy

The overall response in the R-COMP arm was 39/40 (97.5%), with complete remissions in 30 patients (75%). The overall response in the R-CHOP arm was 32/39 (82%), with complete remissions in 27 patients (69.2%) (P = 0.062). The three patients who experienced disease progression during treatment were in the R-CHOP arm. Five patients were not evaluable in regard of response.

Median follow-up: 52 months (range 4-62 months)

No difference in OS, EFS, PFS

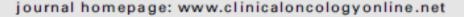
CONCLUSIONS

Primary end-point – a difference in the mean LVEF of all measurement after each cycle between the arms – NOT ACHIEVED

However, cardiac safety warnings more frequent in R-CHOP arm

LVEF every 3 weeks doesn't improve the detection of anthracycline cardiotoxicity

NT-proBNP more convenient (large prospective trials are needed)


Long term cardiotoxicity and the efficacy of NPL-doxorubicin should be studied further in order to clarify its role in patients without risk factors

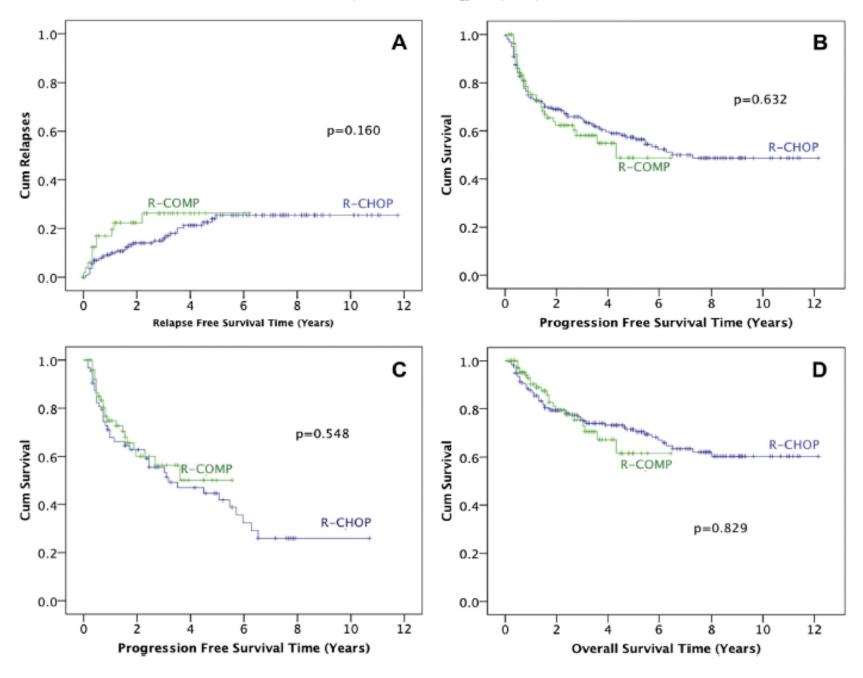
EFFICACY

Contents lists available at ScienceDirect

Clinical Oncology

Short Report

R-CHOP versus R-COMP: Are They Really Equally Effective?



M. Mian*, I. Wasle*, G. Gamerith*, P. Mondello†, T. Melchardt‡, T. Jäger §, W. Linkesch¶, M. Fiegl*

- *Department of Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
- [†]Department of Medical Oncology, University of Messina, Messina, Italy
- [‡]3rd Medical Department, Paracelsus Medical University Salzburg, Austria
- § Department of Internal Medicine, Hospital of Feldkirch, Feldkirch, Austria
- Department of Internal Medicine, Division of Haematology, Medical University of Graz, Austria

Received 26 February 2014; received in revised form 28 April 2014; accepted 29 April 2014

We retrospectively assessed 364 consecutive DLBCL patients who underwent either R-CHOP (218; 60%) or R-COMP (146; 40%) with or without radiotherapy as first-line

Contents lists available at ScienceDirect

Clinical Oncology

journal homepage: www.clinicaloncologyonline.net

Short Report

R-CHOP versus R-COMP: Are They Really Equally Effective?

M. Mian*, I. Wasle*, G. Gamerith*, P. Mondello†, T. Melchardt‡, T. Jäger §, W. Linkesch¶, M. Fiegl*

Received 26 February 2014; received in revised form 28 April 2014; accepted 29 April 2014

In conclusion, R-COMP is a valid treatment alternative for DLBCL patients, who are at high risk of suffering from treatment-related toxicity. For the first time, we proved that both regimens induce a high and comparable number of complete remissions and both are able to cure patients with aggressive lymphoma. However, prospective trials are needed to confirm our data.

^{*}Department of Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria

[†]Department of Medical Oncology, University of Messina, Messina, Italy

[‡]3rd Medical Department, Paracelsus Medical University Salzburg, Austria

[§] Department of Internal Medicine, Hospital of Feldkirch, Feldkirch, Austria

Department of Internal Medicine, Division of Haematology, Medical University of Graz, Austria

Accepted Manuscript

Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin

Grant H. Petersen, Saeed K. Alzghari, Wayne Chee, Sana S. Sankari, Ninh M. La-Beck

PII: S0168-3659(16)30241-3

DOI: doi: 10.1016/j.jconrel.2016.04.028

Reference: COREL 8231

To appear in: Journal of Controlled Release

Received date: 11 February 2016 Revised date: 12 April 2016 Accepted date: 18 April 2016

Figure 3. Objective response in patients treated with liposomal versus conventional chemotherapy formulations.

Study (Year)	Odds Ratio (CI)	P value	Drug	-	
Judson, et al. (2001)	1.11 (0.28; 4.4)	0.8819	Anthracycline		
Dimopoulos, et al. (2003)	1.1 (0.74; 1.63)	0.6361	Anthracycline	 -	
O'Brien, et al. (2004)	0.79 (0.36; 1.72)	0.5517	Anthracycline		
Rifkin, et al. (2006)	1.14 (0.68; 1.92)	0.6207	Anthracycline		
Hunault-Berger, et al. (2011)	0.28 (0.13; 0.6)	0.0011	Anthracycline -		
Batist, et al. (2001)	1.02 (0.67; 1.55)	0.9257	Anthracycline		
Harris, et al. (2002)	1 (0.56; 1.79)	1	Anthracycline		
Latagliata, et al. (2008)	0.94 (0.64; 1.39)	0.7571	Anthracycline		_
Jehn, et al. (2008)	0.41 (0.12; 1.42)	0.1584	Cisplatin	•	_
Kosmas, et al. (2009)	2.01 (0.94; 4.31)	0.0732	Cisplatin	+	
Mylonakis, et al. (2010)	1.19 (0.47; 3)	0.7125	Cisplatin		
Stathopoulos, et al. (2010)	1.67 (1.07; 2.6)	0.0236	Cisplatin		
Yang, et al. (2012)	1.11 (0.46; 2.67)	0.8161	Paclitaxel		
Roy, et al. (2013)	2.16 (0.51; 9.16)	0.2963	Irinotecan		-
Overall	1.03 (0.82; 1.3)	0.7732		(♦	-)
I ² = 42.8%, Q = 22.7, P = 0.045	1				
Subgroups: Anthracyclines Cisplatin	0.94 (0.78; 1.14) 1.49 (1.06; 2.09)		0.1	1 Favors Conventional	10 Favors Liposome

Figure 4. Overall survival in patients treated with liposomal versus conventional chemotherapy formulations.

Study (Year)	Hazard Ratio (CI)	P value	Drug					
Judson, et al. (2001)	0.64 (0.38; 1.1)	0.1062	Anthracycline			■		
Dimopoulos, et al. (2003)	1.36 (0.85; 2.17)	0.1952	Anthracycline			-	-	
O'Brien, et al. (2004)	0.94 (0.74; 1.19)	0.6097	Anthracycline			-		
Rifkin, et al. (2006)	0.69 (0.31; 1.52)	0.3612	Anthracycline			-		
Hunault-Berger, et al. (2011)	0.97 (0.54; 1.77)	0.9298	Anthracycline		_	-		
Batist, et al. (2001)	1.04 (0.77; 1.41)	0.8017	Anthracycline			-	_	
Harris, et al. (2002)	1.32 (0.97; 1.8)	0.0807	Anthracycline			+	■—	
Latagliata, et al. (2008)	0.95 (0.72; 1.26)	0.7459	Anthracycline			-	-	
Mylonakis, et al. (2010)	0.92 (0.54; 1.56)	0.7462	Cisplatin		_	-		
Stathopoulos, et al. (2010)	1.21 (0.87; 1.68)	0.2669	Cisplatin			-	—	
Yang, et al. (2012)	1.27 (0.81; 1.97)	0.2949	Paclitaxel				-	
Roy, et al. (2013)	1.32 (0.79; 2.21)	0.2816	Irinotecan					
Overall 2 = 2.6%, Q = 11.3, P = 0.4187	1.05 (0.95; 1.17)	0.3408				\Q)	
Subgroup: Anthracyclines	1.01 (0.89; 1.15)		,Q	0.1 F	avors Liposome	1	Favors Conventional	10

Figure 5. Progression free survival in patients treated with liposomal versus conventional chemotherapy formulations.

Study (Year)	Hazard Ratio (CI)	P value	Drug			1	
Judson, et al. (2001)	1.09 (0.75; 1.58)	0.6578	Anthracycline		_	 -	
Dimopoulos, et al. (2003)	1.15 (0.8; 1.64)	0.4523	Anthracycline		_	- -	
O'Brien, et al. (2004)	1 (0.82; 1.22)	1	Anthracycline		_	+	
Rifkin, et al. (2006)	1.15 (0.67; 1.98)	0.6070	Anthracycline			 	
Hunault-Berger, et al. (2011)	1.16 (0.67; 2.03)	0.5948	Anthracycline		_	 -	
Batist, et al. (2001)	1.03 (0.8; 1.33)	0.8197	Anthracycline		_	<u> </u>	
Harris, et al. (2002)	1.08 (0.78; 1.5)	0.6448	Anthracycline		_	 - -	
Latagliata, et al. (2008)	1.1 (0.8; 1.5)	0.5518	Anthracycline		-	 -	
Mylonakis, et al. (2010)	0.91 (0.59; 1.42)	0.6817	Cisplatin			•—	
Stathopoulos, et al. (2010)	0.86 (0.64; 1.16)	0.3339	Cisplatin			+	
Yang, et al. (2012)	0.76 (0.53; 1.09)	0.1355	Paclitaxel			+	
Roy, et al. (2013)	1.06 (0.71; 1.57)	0.7794	Irinotecan				
Overall	1.01 (0.92; 1.11)	0.8646				\$]	
I ² = 0%, Q = 5.3, P = 0.9154							\neg
Subgroup: Anthracyclines	1.06 (0.95; 1.18)			0.1	Favors Liposome	1 Favors Conventional	10

CONCLUSIONS

- No RCT
- Safe in cardiopathic or at risk patients
- No prospective trials evaluating the efficacy
- Not useful in non cardiopathic patients
- No data on survivors
- Use of biomarkers vs LVEF