

Memorial Sloan Kettering Cancer Center

New Drugs in Hematology: IDH2 Inhibitors in Acute Myeloid Leukemia

Eytan M. Stein, MD Leukemia Service Memorial Sloan Kettering Cancer Center Weill Cornell Medical College New York, New York

Disclosures of: [enter name and surname]

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Agios Pharmaceuticals	x					x	
Celgene Pharmaceuticals	x					x	

IDH1m and IDH2m: Distinct Genetically Defined Populations

	IDH Mutations Seen in Multiple Cancer Types	
Target	Indication	IDHm (%)
IDH2m	AML	15%
	MDS/MPN	5%
	Angio-immunoblastic NHL	25%
	Others (melanoma, glioma, chondro) ²	3-5%
	Type II D-2HG Aciduria (inborn error of metabolism)	100%
IDH1m	Low-grade glioma & 2 ^{ary} GBM ¹	70%
	Chondrosarcoma	>50%
	AML	7.5%
	MDS/MPN	5%
	Intrahepatic cholangiocarcinoma	20%
	Others (colon, melanoma, lung) ²	1-2%

¹Includes 8.5% of Primary GBM

²Includes "basket" of emerging unconfirmed indications

IDH in AML

- IDH is a critical metabolic enzyme in the citric acid cycle
- IDH1 in cytoplasm and IDH2 in mitochondria
- Cancer-associated IDHm produces 2hydroxyglutarate (2-HG) and blocks normal cellular differentiation
- IDH2 R140Q more common than R172K in retrospective series

Phase 1/2 Study Design – IDH2 inhibitor AG-221 (Celgene/Agios)

Key Endpoints:

- Safety, tolerability, MTD, DLTs
- Response rates as assessed by local investigator per IWG criteria
- Assessment of clinical activity

Disposition (September 2015)

Baseline Characteristics

Data cut-off: 1 Sept 2015	All (N = 209)	RR-AML (n=159)
Age (years), median (range)	69 (19–100)	68 (19–100)
Gender, % M/F	56/44	50/50
IDH2 mutation, n (%)		
R140	146 (70)	109 (69)
R172	50 (24)	41 (26)
ECOG PS, n (%)		
0-1	161 (77)	120 (76)
2	41 (20)	34 (21)
Diagnosis, n (%)		
RR-AML	159 (76)	159 (100)
Untreated AML	24 (11)	-
MDS	14 (7)	-
Other	12 (6)	-
Number of prior Tx, median (range)	-	2 (1–6)

Most Frequent Treatment Emergent Adverse Events (≥15% of patients)

	Any Grade	Grade ≥3
Preferred Term	%	
Nausea	32	2
Diarrhea	28	3
Fatigue	28	6
Hyperbilirubinemia	27	10
Decreased appetite	27	3
Febrile neutropenia	27	26
Dyspnea	23	5
Pyrexia	23	4
Cough	22	0
Vomiting	20	1
Constipation	19	<1
Anemia	18	12
Peripheral edema	18	2
Thrombocytopenia	16	12

Dose-escalation and Serious Adverse Events

Dose-escalation

- Highest daily AG-221 dose: 650 mg
- Dose-escalation ended; MTD not reached

Treatment Related Serious Adverse Events

- 23% of patients had treatment-related SAEs; most frequent were differentiation syndrome (4%), leukocytosis (4%), and nausea (2%)
- Drug-related grade 5 SAEs:
 - cardiac tamponade (1)
 - pericardial effusion (1)
 - respiratory failure (1)

Response

	RR-AML (n = 159)	Untreated AML (n = 24)	MDS (n = 14)	All (N = 209)
Overall Response (CR, CRp, CRi, mCR, PR)	59 (37%)	10 (42%)	7 (50%)	79 (38%)
CR	29 (18%)	4 (17%)	3 (21%)	37 (18%)
CRp	1 (1%)	1 (4%)	1 (7%)	3 (1%)
CRi	3 (2%)	0	0	3 (1%)
mCR	9 (6%)	1 (4%)	3 (21%)	14 (7%)
PR	17 (11%)	4 (17%)	0	22 (11%)
SD	72 (45%)	9 (38%)	6 (43%)	96 (46%)
PD	10 (6%)	1 (4%)	0	11 (5%)
Not evaluable	18 (11%)	4 (17%)	1 (7%)	23 (11%)

Overall response by IDH mutation type: R140Q 36% / R172K 42%

Differentiation Effects in the Bone Marrow

Hemorial Sloan Kettering Cancer Center

Molecular Evidence of Differentiation

Screening – PBMC

Alan Shih and Ross Levine, MSKCC

Variant Allele Frequency (VAF) During Treatment in Patients with CR

- Majority of patients with CR treated to date at Memorial Sloan Kettering Cancer Center do not have appreciable decrease in mIDH₂ VAF
- Additional analyses are planned in a larger cohort of patients

Case Study

- **75yo man**:
 - New AML diagnosed in 2014 34% myeloblasts
 - Normal karyotype, isolated IDH2 R140Q mutation
 - 7+3 \rightarrow achieves a complete remission
 - 3 cycles of intermediate dose ara-c consolidation (1.5g/m2)
 - Relapses in 2015 (1 year after initial diagnosis) 20%
 myeloblasts
 - Normal karyotype, isolated IDH2 R140Q mutation
 - Decitabine x 2 cycles with no remission
 - Starts on AG-221 in October 2015

CT Chest – February 11, 2016

- Started Dexamethasone 10mg bid with rapid resolution of symptoms
- Rapid taper of dex without recurrence of symptoms

Dose-escalation and Serious Adverse Events

Dose-escalation

- Highest daily AG-221 dose: 650 mg
- Dose-escalation ended; MTD not reached

Treatment Related Serious Adverse Events

- 23% of patients had treatment-related SAEs; most frequent were differentiation syndrome (4%), leukocytosis (4%), and nausea (2%)
- Drug-related grade 5 SAEs:
 - cardiac tamponade (1)
 - pericardial effusion (1)
 - respiratory failure (1)

Differentiation Syndrome?

Genetic (Foundation-Heme Panel)Profiling of Patients on Study at Time of Screening

Take Home Points

- IDH2 inhibition has remarkable efficacy as a single agent in relapsed/refractory AML.
 - Response may depend on co-occurring mutations and clonal evolution
- Responses may not be seen for multiple cycles
 Biomarkers for who is destined to respond
- Beware of differentiation syndrome. Despite late onset and potentially atypical presentation.

Ongoing Questions (many)

- How "deep" are the remissions that are achieved with IDH2 inhibition?
 - At the time of morphologic CR, what proportion of patients are MRD positive (next gen sequencing and flow)
- How does the depth of remission translate into:
 - An ability to stop an IDH2 inhibitor in patients who respond
 - Outcomes post allo-transplant

Next Steps

- Combination studies:
 - Induction chemotherapy (ongoing study)
 - Hypomethylating agents (ongoing study)
 - "novel-novel" (in development)
- Maintenance therapy
 - Post induction/consolidation for patients in CR (ongoing)
 - Post-transplant especially in those patients who go to transplant with evidence of MRD

Thank You!

