INTERNATIONAL CONFERENCE TRANSLATIONAL RESEARCH IN ONCOLOGY

CAR T CELLS: CHIMERA OR REALITY?

Franco Locatelli, MD, PhD University of Pavia IRCCS Ospedale Bambino Gesù, Rome, Italy

Science

Breakthrough of the Year Cancer Immunotherapy

T cells on the attack

MAAAS

From antibodies to adoptive cell therapy

Adoptive T cell therapy projects at OPBG

- Evaluation of potential tumor-specific antigens;
- Cloning of specific T Cell Receptors (TCR, HLA-restricted);
- Cloning of specific Chimeric Antigen Receptors (CAR, HLAunrestriceted);
- Production of clinical grade products;
- Conduction of Clinical Trials.

Chimeric Antigen Receptor

Transient effect

Limited tissue bio-distribution

Requirement for high expression of the target molecule Persistence for the prolonged lifetime of the cell

Active penetration of solid tissues

Ability to recognize tumor cell subsets with low antigen density

Multiple lytic activities following target recognition

Toxicity

- Cytokine Release Syndrome (CRS)
 - Severity related to disease burden
 - Reversed with anti-IL6 therapy
 - Severe CRS mirrors HLH/MAS
- Tumor Lysis Syndrome
 - Not a prominent feature, but may be with high WBC
- Neurotoxicity
 - Seen in several CD19 immunotherapy trials: NCI, CHOP/UPENN, MSKCC, Blinatumomab
 - Fatal events have been recently reported
- Chronic B cell aplasia requiring IgG replacement

Example of approach to CAR T cell production

Ab, antibody; PBMC, peripheral blood mononuclear cells

Adapted from http://global.onclive.com/publications/contemporary-oncology/2014/august-2014/chimeric-antigen-receptor-car-t-cell-immunotherapy-for-leukemia-and-beyond. Accessed April 2016

NEXT CHALLENGES: CAR T cell in solid tumors

Neuroblastoma

Disseminated Neuroblastoma

(Comp)

Abbreviations: GN, ganglioneuroma; GNB, ganglioneuroblastoma.

H

WW.

Zage PE et al. new aspect of neuroblastoma treatment: ASPHO 2011 symposium review. Pediatric blood & cance 20012.

Mechanism of GD2 antibody-targeted destruction of neuroblastoma by CDC and ADCC

Matthay K K et al. Clin Cancer Res 2012;18:2740-2753

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma

 Alice L. Yu, M.D., Ph.D., Andrew L. Gilman, M.D., M. Fevzi Ozkaynak, M.D., Wendy B. London, Ph.D., Susan G. Kreissman, M.D., Helen X. Chen, M.D., Malcolm Smith, M.D., Ph.D., Barry Anderson, M.D., Judith G. Villablanca, M.D., Katherine K. Matthay, M.D., Hiro Shimada, M.D., Stephan A. Grupp, M.D., Ph.D., Robert Seeger, M.D., C. Patrick Rynolds, M.D., Ph.D., Allen Buxton, M.S., Ralph A. Reisfeld, Ph.D., Steven D. Gillies, Ph.D., Susan L. Cohn, M.D., John M. Maris, M.D., and Paul M. Sondel, M.D., Ph.D., for the Children's Oncology Group

ANBL0032: A COG Study 13-cis-Retinoic Acid ± Ch14.18 with cytokines post Stem Cell Transplant

Yu AL, et al. N Engl J Med 2010

Baylor College of Medicine (BCM) Phase I trial (NCT00085930) – Study design

- 19 pts with High-Risk Neuroblastoma, relapsed/refractory or after initial therapy
- Partial in vivo lymphodepletion (unconjugated rat anti-hCD45)
- First generation CAR-ATCs + CAR-CTLs administered at 3 dose levels:
 - 1,2 x 10⁷ cells/m² (0,4 x 10⁶ cells/Kg)
 - 5x10⁷ cells/m² (1.7 x 10⁶ cells/Kg)
 - 1 x 10⁸ cells/m²(3.3 x 10⁶ cells/Kg)

Safety data

No severe or dose-limiting toxicities have been identified. Three patients had grade 1 to 3 localized pain (2 at a site of biopsy-proven tumor necrosis and 1 in her lower leg at a site with no evidence of active disease).

Pule M, et al. Nature Medicine 2008

BCM Phase I trial (NCT00085930) - Results (1) GD2 T cells

С n

CAGT no.	Age, y	Sex	Stage at diagnosis	Dose level	Disease burden at CTL infusion	Response at 6 weeks	Best response	weeks after infusion	Clinical outcome
1662	9	Male	IV	1	NED	NED	NED	24	NED 11 mo after infusion
1738	5	Male	IV	1	NED	NED	NED	1	NED 10 mo after infusion
1705	4	Male	IV	1	NED	NED	NED	4	NED 10 mo after infusion
1632	20	Female	lla	1	Relapsed, NED	NED	NED	2	AWD 13 mo after infusion
1629	7	Male	IV	1	Relapsed, NED	NED	NED	12	AWD 7 mo after infusion
1571	4	Female	IV	1	Relapsed, bone lesion	PD	PD	4	DOD 4 mo after infusion
1290	9	Female	IV	1	Relapsed, bone lesion	CR	CR	72	CR 1 yr 9 mo after infusion
1144	4	Female	IV	1	Refractory, bone lesion	PR	CR	192	CR 4 y 10 mo after infusion
1040	10	Male	IV	1	Relapsed, bulky	PD	PD	6	DOD 10 mo after infusion
717	11	Male	IV	1	Relapsed, bulky	PD	PD	1	DOD 2 mo after infusion
1151	10	Female	IV	2	Relapsed, NED	NED	NED	2	DOD 3 y after infusion
1089	4	Female	IV	2	Relapsed, NED	NED	NED	96	NED 3 y 3 mo after infusion
1035	15	Female	IV	2	Relapsed, bone marrow	CR	CR	6	DOD 6 mo after infusion
1117	9	Female	IV	2	Relapsed, bulky	PD	PD	28	DOD 10 mo after infusion
1208	3	Male	IV	2	Relapsed, bulky	SD	SD	12	DOD 6 mo after infusion
1253	9	Female	III	2	Relapsed, bulky	Tumor necrosis	Tumor necrosis	4	DOD 14 mo after infusion
1353	7	Male	IV	3	Relapsed, NED	NED	NED	12	DOD 2 y 7 mo after infusion
1237	4	Female	IV	3	Relapsed, bulky	Tumor necrosis	Tumor necrosis	2	DOD 2 mo after infusion
1361	7	Male	IV	3	Relapsed, bulky	SD	PR	72	AWD 2 v 8 mo after infusion

Louis C. et al, Blood 2001

last detected

BCM Phase I trial (NCT00085930) – Results (2)

 \rightarrow Improving CAR T cells persistence is mandatory:

- Lymphodepletion
- 2nd and 3rd generation CAR constructs

Louis C. et al, Blood 2001

Third Generation CARs Targeting GD2 (14.G2a)

iC9 suicide gene

iCasp9 = FKBP12v36 + ∆Caspase9 *All human sequence

<u>BP-004 Study</u> Clinical trial started on September 2014 in OPBG

Phase I/II Study of BPX-501 T Cells from an HLA-partially Matched Family Donor After Negative Selection of TCR αβ+T Cells in Pediatric Patients With Hematological (malignant and non-malignant) Disorders

> ClinicalTrials.gov identifier: NCT02065869 EUDRACT number: 2014-000584-41

Safety profile

- ✓ Cytokine-dependent expansion
- ✓ Vector copy Number Analysis
- ✓ Polyclonality
- ✓ Cytogenetic Analysis
- ✓ Molecular Cytogenetic Analysis (CGH Array)
- ✓ Telomer elongation

2016 timeline for starting treatment of patient

Ongoing clinical trials

Antigen	Cancers	Cancers Gene CAR construct Lymphodepletion		Dose levels	Phase/I D	Sponsor	
GD2	Sarcoma Neuroblastoma Melanoma	Retrovirus	3rd generation + iC9	Cyclo (1800 mg/m²/day x 2 days)	DL1: 1 x 10 ⁵ /Kg DL2: 1 x 10 ⁶ /Kg DL3: 3 x 10 ⁶ /Kg DL4: 1 x 10 ⁷ /kg	I/NCT02 107963	NCI
GD2	Neuroblastoma	Lentivirus	Not reported (4th generation)	Flu (25 mg/m ² days -4, -3, -2) + Cyclo (300 mg/m ² , days -4, -3, -2)	Not reported	II/NCT0 276524 3	Zhujiang Hospital
GD2	GD2-positive sarcoma	Retrovirus	3rd generation + iC9 (<u>VZV-Tcells</u>)	None (VZV vaccine boosting)	DL1: 1 x 10 ⁶ /m ² DL2: 1.5 x 10 ⁷ /m ² DL8: 1 x 10 ⁸ /m ²	I/NCT01 953900	ВСМ
GD2	Neuroblastoma	Retrovirus	3rd generation + iC9	Cyclo (500 mg/m ² x 2 days) + Flu (30 mg/m ² x 3 days) + <u>Pembrolizumab</u> (2 mg/kg on days -1 and +21)	DL1: 1 x 10 ⁸ /m ² DL2: 1.5 x 10 ⁸ /m ² DL3: 2 x 10 ⁸ /m ²	I/NCT01 822652	всм
GD2	Neuroblastoma	Not reported	Not reported	Cohort I: none Cohort II: Cyclo (300 mg/m2, days -4 to -1) Cohort III: Cyclo (300 mg/m2, days -4 to -1) + Flu (25 mg/m ² days -5 to -1)	DL1: 1 x 10 ⁷ /m ² DL2: 1 x 10 ⁸ /m ²	I/NCT02 761915	Cancer Research UK
GD2	Neuroblastoma	Retrovirus	3rd generation + iC9 (<u>NK T</u> <u>cells</u>)	Cyclo (500 mg/m ² x 2 days) + Flu (30 mg/m ² x 3 days)	DL1: 3 x 10 ⁶ /m ² DL2: 1 x 10 ⁷ /m ² DL3: 3 x 10 ⁷ /m ² DL4: 1 x 10 ⁸ /m ²	I/NCT02 439788	всм

How can we improve patients outcome ?

- One of the characteristics of the ideal tumor-specific T cell is the ability to infiltrate tumor environment.
- To invade tumor environment T cells must digest :
 Sub-endothelial basement membrane (SBM)
 Extracellular matrix (ECM)
- Major components of SBM and ECM are <u>Heparan</u> sulphate proteoglycans (HSPGs)
- T cells must release the enzyme <u>heparanase</u> to degrade HSPGs

HPSE and CAR-GD2 co-expression improve overall survival in NB xenograft mouse models (I)

Article

Immunity

Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma

Posey et al., 2016, Immunity 44, 1444–1454 UcrossMark June 21, 2016 © 2016 Elsevier Inc. http://dx.doi.org/10.1016/j.immuni.2016.05.014

Article

Immunity

Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma

Posey et al., 2016, Immunity 44, 1444–1454 June 21, 2016 © 2016 Elsevier Inc. http://dx.doi.org/10.1016/j.immuni.2016.05.014

Factors influencing CAR T-cell activity

ACKNOWLEDGEMENTS

Dipartimento di Oncoematologia e Terapia Trasfusionale Onco-Haematology Clinical Staff

Unità di Immunoterapia dei Tumori

Concetta Quintarelli Biagio De Angelis Ignazio Caruana Francesca Del Bufalo Domenico Orlando Iole Boffa Marika Guercio Vinicia Polito Beatrice Conti Rosaria Cristantielli Tamascia Belardinilli Valeria Caposotto

Officina Farmaceutica Marco Dieci Andrea La Sala Carla Paganin

Aiutaci... per aiutarli a vivere! Now, this is not the end. It is not even the beginning of the end, but it is, perhaps, the end of the beginning.....

