INTERNATIONAL CONFERENCE

TRANSLATIONAL RESEARCH IN ONCOLOGY

November 8 2016 IRST IRCCS - Meldola November 9-10-11|2016 HOTEL GLOBUS CITY - Forli

ESO Recommended Even

FIRST GENERATION ANTI-EGFR THERAPIES AND RESISTANCE MECHANISMS

Lucio Crinò IRST IRCCS - Meldola

) istituto encologico remagnolo vicino a chi soffre, indeme a chi cara

The burden of NSCLC

Parkin D, et al. CA Cancer J Clin 2005;55:74–108; Ferlay J, et al. Ann Oncol 2007;18:581–592

ONCOGENE ADDICTION

Some cancers that contain multiple genetic, epigenetic and chromosomal abnormalities are dependent to one or a few genes for both maintenance of the malignant phenotype and cell survival

- ERB-B2 in breast cancer
- EGFR in NSCLC
- EML4-ALK in NSCLC
- ROS1 in NSCLC
- BRAF in NSCLC and melanoma-KIT in GIST
- RET in medullary thyroid cancer
- RET in NSCLC
- HIF/VEGF in renal cancer

Molecular subsets of lung adenocarcinoma

Pao & Hutchinson Nat Med 2012

Pioneers and milestones: evidence that EGFR is important in NSCLC biology

1980

Isolation of human EGF receptor (EGFR) by Stanley Cohen

Cohen S, et al. J Biol Chem 1980

1984 Human EGFR gene cloned and sequenced

Ullrich A, et al. Nature 1984

EGFR mutation causes conformational change and increased activation

EGFR signals for longer at the cell membrane

Arteaga 2006; Gadzar et al 2004; Hendricks et al 2006; Sordella et al 2004

EGFR-TKIs in first-line in EGFR-M+

Study	Treatment	Ν	Median PFS, Mos	Median OS, Mos
Maemondo ^[1]	Gefitinib vs carboplatin/ paclitaxel	230	10.8 vs 5.4 (<i>P</i> < .001)	30.5 vs 23.6 (<i>P</i> = .31)
Mitsudomi ^[2,3]	Gefitinib vs cisplatin/docetaxel	177	9.2 vs 6.3 (<i>P</i> < .0001)	HR: 1.19
OPTIMAL ^[4,5]	Erlotinib vs carboplatin/gemcitabine	165	13.1 vs 4.6 (<i>P</i> < .0001)	HR: 1.065
EURTAC ^[6]	Erlotinib vs platinum-based chemotherapy	174	9.7 vs 5.2 (<i>P</i> < .0001)	19.3 vs 19.5 (<i>P</i> = .87)
LUX-Lung 3 ^[7]	Afatanib vs CDDP/pemetrexed	345	11.1 vs 6.9 (<i>P</i> = .001)	33.3 vs 21.1 (P=0.0015)
LUX-Lung 6 ^[8]	Afatinib vs cisplatin/gemcitabine	364	11.0 vs 5.6 (<i>P</i> < .0001)	31.4 vs 18.4 (P=0.00229)

Ц

C

С Ш

1. Maemondo M, et al. N Engl J Med. 2010;362:2380-2388. 2. Mitsudomi T, et al. Lancet Oncol. 2010;11:121-128. 3. Mitsudomi T, et a. ASCO 2012. Abstract 7521. 4. Zhou C, et al. Lancet Oncol. 2011;12:735-742. 5. Zhang C, et al. ASCO 2012. Abstract 7520. 6. Rosell R, et al. Lancet Oncol. 2012;13:239-246. 7. Sequist LV, et al. J Clin Oncol. 2013;31:3327-3334. 8. Wu YL, et al. Lancet Oncol. 2014;15:213-222.

Lux-Lung 3 and 6: combined OS analysis Del19 + L858R

Median follow-up for OS has been of 36.5 months

James Chih-Hsin Yang – ASCO 2014

1 year OS gain a in Del19 No OS advantage in L858R

James Chih-Hsin Yang – ASCO 2014

Erlotinib + Bevacizumab in 1st line in EGFR-M+

Chemotherapy-naïve Stage IIIB/IV or postoperative recurrence Non-squamous NSCLC Activating *EGFR* mutations* Exon 19 deletion Exon 21 L858R Age ≥20 years PS 0–1 No brain metastasis

*T790M excluded

Stratification factors: sex, smoking status, clinical stage, EGFR mutation type

Secondary endpoints:

OS, tumor response, QoL, safety

Exploratory endpoint:

biomarker assessment

Presented by: Terufumi Kato

Lancet Oncol 2014: 15 (11);1236 - 1244

PRESENTED AT:

Primary endpoint: PFS by independent review

LUX-LUNG 7 STUDY DESIGN

Patients (N=319)

- Stage IIIB/IV adenocarcinoma of the lung
- EGFR mutation (Del19 and/or L858R) in the tumour tissue*
- No prior treatment for advanced/metastatic disease
- ECOG PS 0/1

- Treatment beyond progression allowed if deemed beneficial by investigator
- RECIST assessment performed at Weeks 4, 8 and every 8 weeks thereafter until Week 64, and every 12 weeks thereafter
- Primary PFS analysis conducted after ~250 events; primary OS analysis conducted after ~213 events and ≥32-mo follow-up
- All statistical testing at two-sided 5% alpha level with no adjustment for multiplicity

*Central or local test; *Dose modification to 50, 30, or 20 mg was permitted in line with prescribing information ECOG PS, Eastern Cooperative Oncology Group performance status; HRQoL, health-related quality of life; QD, once daily; RECIST, Response Evaluation Criteria In Solid Tumors;

UPDATED PFS (INDEPENDENT REVIEW)

*unadjusted

UPDATED TTF

COPENHAGEN 2016

*unadjusted

UPDATED TUMOUR RESPONSE

	Afatinib	Gefitinib	
Median DoR (months)	10 .1	8.3	
95% CI	(8.2–11.1)	(7.3-10.2)	

DoR, duration of response

OS (OVERALL POPULATION)

- Median follow-up: 42.6 months (as of 08 April 2016)
- Median treatment duration (afatinib vs gefitinib): 13.7 vs 11.5 months

TKIs primary and acquired resistance:

- TKIs are the treatment of choice in any line of metastatic lung adenocarcinomas harboring EGFR mutations or ALK and ROS1 rearrangements
- Response Rate ranges between 60 or 70% implying that 30-40% of the patients present primary resistance
- Activity is limited because complete remissions are below 5% and most of patients relapse in 9-11 months
- Resistance mechanisms are not completely understood and seem to be multiple and independent.

EGFR mut+ lung Adenocarcinoma: what happens after the first line?

- 1. The awareness that the first line result will not last forever: all patients will progress whatever EGFR-TKI we will use.. 1st-2ndn° generation!
- 2. Defining progression by RECIST criteria may lead to premature termination of the EGFR-TKI
- 3. Clinical presentation at disease progression: «oligoprogressive» vs «widespread» vs «CNS only»
- 4. Defining the mechanism of resistance
 - Re-biopsy
- 5. Third generation EGFR-TKIs: OSIMERTINIB and...the others
- 6. Potential and «Hazards» of liquid biopsy
- 7. Potential and «Hazards» of combinations

RECIST-defined progression may not reflect general treatment failure

Systemic progression

Symptomatic and rapid progression

Gradual progression Lesions start growing

Oligoprogression Single new or newly growing lesions

Suggested criteria for considering local Ablative therapy of EGFR mut+ oligoprogressive disease

1. EGFR-mutant metastatic NSCLC

- 2. TKI is well tolerated
- **3. Oligoprogressive disease on TKI therapy, defined as:**

CNS progression without leptomeningeal disease amenable to WBRT, SRS, or surgical resection.

4. Progression in \leq 4 extra-CNS sites amenable to SBRT, XRT, or surgical resection.

today probably we would add
whenever a 3rd generation EGFR-TKI is not
«easily» available for the patient

Mechanisms of drug resistance to EGFR TKis

MOLECULAR MECHANISMS OF EARLY PRIMARY RESISTANCE TO EGFR TKI

- Pre-existence of minor resistance subpopulations (T790M or MET amplified clones)
- Reversible drug tolerance state (cell line models)
- Survival signaling from microenvironments (fibroblast or dying cancer cells)
- Poor vascolarization of the tumor

Mechanisms of residual tumor cells against EGFR TKIs

TP53 mutation as potential resistance mechanism to TKIs

TP53 GOF mutations are able to:

- Increase tumorigenicity
- Increase growth rate and motility
- Increase metastasis and invasiveness
- Up-regulate the expression of Axl
- Induce the EMT process

Both implicated in TKIs resistance

Impact of *TP53* Mutations on Outcome in *EGFR*-Mutated Patients Treated with First-Line Tyrosine Kinase Inhibitors

Matteo Canale¹, Elisabetta Petracci², Angelo Delmonte³, Elisa Chiadini¹, Claudio Dazzi⁴, Maximilian Papi⁵, Laura Capelli¹, Claudia Casanova⁴, Nicoletta De Luigi³, Marita Mariotti³, Alessandro Gamboni⁶, Rita Chiari⁷, Chiara Bennati⁷, Daniele Calistri¹, Vienna Ludovini⁷, Lucio Crinò⁷, Dino Amadori³, Paola Ulivi¹

Clin Cancer Res. 2016 Oct 25

	DCR, n (%)		Unadjusted		
TD52 mutation	No	Yes		L.	
	(n=22)	(n=101)	KK [95% CI]	Р	
All mutations					
Wt	10 (11.8)	75 (88.2)	1	0.019	
Mut	11 (29.7)	26 (70.3)	3.17 [1.21 - 8.48]		
Exon 8					
Wt	14 (12.7)	96 (87.3)	1	< 0.001	
Mut	7 (58.3)	5 (41.7)	9.6 [2.71- 36.63]		

PFS e OS in patients with TP53 exon 8 mutations respect to those exon 8 wt (overall case series)

PFS e OS in patients with TP53 exon 8 mutations respect to those exon 8 wt, in the subgroup of patients with **EGFR exon 19 deletions**

Months

	PFS		OS	
	HR [95% CI]	р	HR [95% CI]	р
TP53 mutation				
wt	1		1	
mut	1.74 [0.92 – 3.29]	0.086	1.58 [0.64 – 3.87]	0.321
TP53 exon 8 mutation				
wt	1	0.006	1	0.012
mut	6.99 [2.34-20.87]	0.006	4.75 [1.38-16.29]	0.015

Third generation EGFR-TKIs

Drug	ORR T790M +	ORR T790M -	G 1-2 Diarrhea	G1-2 Rash
AZD9291	65%	22%	20%	27%
CO-1686	58%	-	23%	4%
HM 61713	29%	12%	21%	24%

AURA TRIALS

- AURA: Phase 1/2 study in advanced EGFR mut+
 NSCLC TKI failure +/- primary resistance mutation
 T790M
- AURA2: Phase 2 study in advanced EGFR mut+
 NSCLC TKI failure and primary resistance mutation
 T790M
- AURA3: Phase 3 study in advanced EGFR mut+
 NSCLC TKI failure and primary resistance mutation
 T790M versus chemotherapy
- FLAURA: Phase 3 study in advanced EGFR mut+
 NSCLC TKI versus gefitinib or erlotinib

TIGER TRIALS

- TIGER1: Phase 2/3 randomized registration study in newly-diagnosed advanced NSCLC patients (vs. erlotinib)
- TIGER2: Phase 2 registration study in 2nd line
 T790M+ patients directly progressing on first TKI
- TIGER3: Phase 2 registration study in later-line
 T790M+ patients, progressing on second or later TKI or subsequent chemotherapy
- TIGER4: Phase 2 study in 2nd or later-line patients with T790M detected with a blood/plasma assay
- TIGER5: Phase 3 randomized confirmatory study in 2nd or later-line patients (vs. chemo)

OSIMERTINIB: The drug

Pharmacodynamics

- ✓ It is an irreversible EGFRTKI, with 200 times greater affinity for EGFR with L858R, Del19 and T790M mutations than wild-type EGFR in vitro
- ✓ Single-dose daily, Cmax reached in 6 h , dose-proportional over the 20–240 mg range
- Acquired resistance mediated by the EGFR C797S mutation, amplification of HER2, MET or alternative pathways, and histological transformation.

Pharmacokinetics

- ✓ In a mouse model distribution to the brain 5- to 25-fold higher in brain tissue than plasma and 10-fold higher than that of gefitinib
- ✓ 80 mg daily is predicted to be sufficient to be effective in EGFRm+ brain metastases.
- ✓ No food effect

Drug Interactions

 ✓ Potential drug interactions with strong CYP3A inhibitors or inducers, and substrates of CYP3A, BCRP or CYP1A2 with narrow therapeutic indices

Tumor response by independent central review

Ramalingam S et al, Mitsudomi T et al, Yang J et al, MINI ORAL 16, WCLC 2015

Osimertinib – Second line or later monotherapy

Consistent data of ORR (60-70%) and DCR (80-90%) across all trials in T790M positive patients!

AZD9291 in pre-treated T790M positive advanced NSCLC: AURA2 Phase II study

Tetsuya Mitsudomi¹, Chun-Ming Tsai², Frances A. Shepherd³, Lyudmila Bazhenova⁴, Jong Seok Lee⁵, Gee-Chen Chang⁶, Lucio Crino⁷, Miyako Satouchi⁸, Quincy Chu⁹, Rachael Lawrance¹⁰, Mireille Cantarini¹⁰, Serban Ghiorghiu¹¹, Glenwood Goss¹²

¹Kinki University Faculty of Medicine, Osaka-Sayama, Japan; ²Department of Chest Medicine, Taipei-Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan; ³Princess Margaret Cancer Centre, Toronto, Canada; ⁴Moores Cancer Center, La Jolla, CA, USA; ⁵Seoul National University, Bundang Hospital, Seongnam, Republic of Korea; ⁶National Yang-Ming University, Taipei, and Taichung Veterans General Hospital, Taichung, Taiwan; ⁷Perugia University Medical School, Perugia, Italy; ⁸Hyogo Cancer Center, Akashi, Japan; ⁹University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; ¹⁰AstraZeneca, Macclesfield, UK; ¹¹AstraZeneca, Cambridge, UK; ¹²The Ottawa Hospital Cancer Centre, Ottawa, Canada

LASLC 40 years

Presented by T Mitsudomi at the World Conference on Lung Cancer 2015 Journal of Thoracic Oncology 2015; 10(9, Suppl 2): S320, abstract Mini 16.08

ORRs across predefined subgroups

					0	RR % (95% CI)
Overall (n=199)			- H-	•		71 (64, 77)
Treatment cohort						
Second-line (n=63)				H		73 (60, 83)
≥Third-line (n=136)			-	H .		70 (61, 77)
Ethnicity						
Asian (n=123)				н.		72 (64, 80)
Non-Asian (n=76)			-	-		68 (57, 79)
Mutation status prior to start of study						
Exon 19 deletion (n=129)			- H	H.,		78 (69, 84)
L858R (n=63)		- F				59 (46, 71)
Brain metastases at entry						
Brain metastases (n=84)				•		68 (57, 78)
No brain metastases (n=115)				H		73 (64, 81)
Last treatment prior to study start						
EGFR-TKI (n=150)			-	-		70 (62, 77)
<30 days prior to first dose of AZD9291 (n=106)				Η		68 (58, 77)
≥30 days prior to first dose of AZD9291 (n=44)			-	-		75 (60, 87)
Not EGFR-TKI (n=49)				H-1		74 (59, 85)
-	20	40	60	00	100	
U	20	40	00	ou	100	

NOTE: Other predefined subgroups were: gender, age at screening (<65, ≥65), duration of most recent EGFR-TKI (<6 months, ≥6 months), smoking status (never, ever), T790M status in baseline plasma sample (circulating tumor DNA), region (North America, Asia, EU, and rest of world) Data cut-off: May 1, 2015. Population: evaluable for response set (n=199)

Presented by T Mitsudomi at the World Conference on Lung Cancer 2015. Journal of Thoracic Oncology 2015; 10(9, Suppl 2): \$320, abstract Mini 16.08

Duration of response and progression-free survival

KM-based estimated [†]	Total‡
Median DoR, [¶] months (95% CI)	7.8 (7.1, NC) Maturity: 27%
Remaining in response, % (95% CI) 6 months 9 months	75 (65, 82) NC (NC, NC)
Range of DoR, months	1.3-8.4

KM-based estimated [†]	Total [§]
Median PFS,** months (95% CI)++	8.6 (8.3, 9.7) Maturity: 38%
Remaining alive and progression free, % (95% CI) 6 months 9 months	70 (63, 76) 48 (36, 58)
Median follow-up for PFS	6.7 months

the

Data cut-off: May 1, 2015. 'Gr from the first documentation o date of objective disease prog DoR, duration of response; KI

Presented by T Mitsudom

Median PFS, months (95% CI): 8.6 (8.3,9.7) Maturity: 38%

AZD9291 in pre-treated patients with T790M positive advanced non small cell lung cancer (NSCLC): pooled analysis from two Phase II studies

Median PFS in months:

9.7 (95% CI 8.3, NC)

maturity: 39%, full analysis set

Goss et al ESMO 2015

AURA 3 Study Design

A Phase III, open-label, randomised study to assess the safety and efficacy of AZD9291 vs platinum-based doublet chemotherapy in second-line treatment of patients with advanced or metastatic NSCLC who have progressed following treatment with an EGFR-TKI and whose tumours are EGFRm+ and T790M+

Primary end point: PFS	Secondary end points: ORR, DoR, DCR
	OS
Clinicaltrial.gov NCT02151981	HRQoL
	РК
Enrollment closed	Safety and tolerability

AZD9291 activity in patients with EGFR-mut advanced NSCLC and BRAIN METASTASES: data from Phase II studies

We report exploratory and investigatory results relating to brain metastases of patients enrolled in the AURA extension Phase II component and the AURA 2 Phase II study

Results

Demographics

- As of 1 May 2015, 411 patients were enrolled; 201 in AURA extension, and 210 in AURA2.
- 161 (39%) had documented history of brain metastases at entry across both trials, assessed by medical history (Table 1).
- 50% (206/411) of patients submitted baseline brain scans for BICR.
 - Over half (56%, 90/161) of the patients with history of brain metastases had brain metastases assessed by BICR for response as RECIST NTLs.
- Brain lesions were only assessed as NTLs or NLs by RECIST 1.1.
- At baseline, a higher proportion of ≥third-line patients had brain metastases compared with second-line patients (44% vs 28%).

netastases						
	Patients with brain metastases (n=161)	Patients without brain metastases (n=250)				
RECIST progression	68 (42.2%)	74 (29.6%)				
RECIST progression in the brain/CNS	23 (14.3%)	3 (1.2%)				
Progression due to NTLs in brain/CNS	13 (8.1%)	0				
NLs in the brain/CNS	14 (8.7%)	3 (1.2%)				
Death	11 (6.8%)	6 (2.4%)				
No progression 82 (50.9%) 170 (68.0%)						
BICR, blinded independent central review; CNS, central nervous system; NL, new lesion; NTL, non-target lesion; RECIST, Response Evaluation Criteria In Solid Tumors						

Table 2 DECIST pregrassion events (DICD) by medical history of brain

- 35% of all patients (142/411) had a RECIST progression event at data cut-off (1 May 2015).
- 18% of these patients (26/142) had progression in the brain: 23 with, and three without history of brain metastases (Table 3).
- More than half (51%, 82/161) of the patients with medical history of brain metastases had not progressed at the time of data cut-off.
- Three patients without brain metastases at baseline experienced RECIST progression due to progression of a new brain lesion.

Table 4. Progression-free survival (BICR) by medical history of brain metastases

	Patients with brain metastases (n=161)	Patients without brain metastases (n=250)			
Total number of events	79	80			
Progression-free survival, months					
Median (95% CI)	8.0 (6.9, 8.5)	9.7 (9.7, NC)			
Percentage remaining progression free					
3 months (95% CI)	78.5 (71.2, 84.1)	86.2 (81.3, 90.0)			
6 months (95% CI)	63.4 (55.3, 70.4)	75.5 (69.7, 80.7)			
9 months (95% CI)	36.5 (25.5, 47.5)	61.7 (53.9, 68.5)			
BICR, blinded independent central review; CI, confidence interval; NC, not calculated; PFS, progression-free survival Maturity of PFS data in the full analysis set is 39%; median follow-up for PFS was 6.8 months					

The potential and "hazards" of liquid biopsies

- Liquid biopsy comprises a set of blood-based analyses to assess tumor-specific genetic alterations, therapy response, and resistance development.
- cfDNA consists of small fragments of nucleic acids that are not associated with cells or cell fragments.
- CTCs represent intact, viable tumor cells that can be purified from blood.
- Exosomes are extracellular vesicles that contain nuclear proteins, and metabolites.

WANK

MADAX

VYMX

The potential and "hazards" of liquid biopsies

- ✓ Avoid the need of re-biopsy.
- Monitoring and early identification of emerging changes leading to acquired resistances.
- ✓ A very sensitive genotyping assay such as ddPCR can detect EGFR sensitizing and resistance mutations
- ✓ Prediction of resistance several weeks (4–14) before radiologic progression

.....Is liquid biopsy ready for the clinic?

-ALK TKI Resistance

Finding the Cause of Resistance

•Re-biopsy

ALK rearranged

Next generation ALK-TKIs after Crizotinib: phase I and II clinical trials

Suggested criteria for considering local Ablative therapy of oligoprogressive disease: EGFR mut+ and ALK+

1. EGFR-mutant or Alk+ metastatic NSCLC

2. TKI is well tolerated

3. Oligoprogressive disease on TKI therapy, defined as:

CNS progression without leptomeningeal disease amenable to WBRT, SRS, or surgical resection.

4. Progression in ≤ 4 extra-CNS sites amenable to SBRT, XRT, or surgical resection.

... today probably we would add

5. whenever a next generation EGFR-TKI or ALK-TKI is not «easily» available for the patient
6) Are this concepts appliable to second generation ALK-TKIs???....probably yes

NSCLC ALK + and Brain mts: Incidence compared with other genotypes?

Doebele et al, Cancer 2012;118(18):4502-11.

Crizotinib and Brain mets: more certainties than doubts!

- Crizotinib, has a very poor penetration rate to the CSF of 0.06-0.26%
 [1,2]
- However, crizotinib has a well documented clinical activity against BMs (retrospective analysis of PROFILE 1005 and PROFILE 1007) [3] as well as data from PROFILE 1014 [4]
- "The CNS is a sanctuary site in ALK positive NSCLC on crizotinib" being the first site of progression in 46% of cases, 85% of which lacked coincident systemic progression¹
- More frequent intramedullary spinal cord metastasis and leptomeningeal carcinomatosis²
- High-dose crizotinib for brain mts refractory to standard-dose (500 mg single adm³; 600 mg/day⁴; 1000 mg/day⁵)

Crizotinib and BMs from *ALK***+ NSCLC**

	Untreated brain metastases (n = 109)			Treated brain metastases (n = 166)		
	# pts	outcome	95% CI	# pts	outcome	95% CI
IC ORR, % (target lesions)	22	18%	5-40	18	33%	13-59
IC DCR at 12 weeks	109	56%	46-66	166	62%	54-70

Intra-cranial failure accounts for appr. 70% of PDs in patients with brain metastases at baseline and 20% of PDs in patients without brain metastases at baseline

2nd generation ALK-TKIs: active against most but not all secondary mutations

	Alectinib	AP26113	Ceritinib	Crizotinib
				1151Tins
				L1152R
			F1174V/C	F1174V/L
				L1196M
-	G1202R	G1202R D1203N	G1202R	G1202R D1203N
		2120011		S1206Y
	11171T/N/S			G1269A
	144901			
	VIIOL			
	V1180L			
e Shaw	Alice	015 ASCO Annual Meetin	Presented By Alex Adjei at 2	
e Shaw	Alice	015 ASCO Annual Meeting	Presented By Alex Adjei at 2 Response	ALK secondary
e Shaw	Alice Resistance to	015 ASCO Annual Meeting ALK secondary mutations	Presented By Alex Adjei at 2 Response expected to 2 nd	ALK secondary mutations
e Shaw	Alice Resistance to Ceritinib	015 ASCO Annual Meeting ALK secondary mutations (G1202R)	Presented By Alex Adjei at 2 Response expected to 2 nd generation ALK	ALK secondary mutations (L1196M)
e Shaw	Resistance to Ceritinib or Alectinib	015 ASCO Annual Meeting ALK secondary mutations (G1202R) (F1174C)	Presented By Alex Adjei at 2 Response expected to 2 nd generation ALK TKI	ALK secondary mutations (L1196M) (G1269A)
e Shaw	Alice Resistance to Ceritinib or Alectinib	ALK secondary mutations (G1202R) (F1174C) (C1156Y)	Presented By Alex Adjei at 2 Response expected to 2 nd generation ALK TKI Ceritinib	ALK secondary mutations (L1196M) (G1269A) (S1206Y)
e Shaw	Alice Resistance to Ceritinib or Alectinib	015 ASCO Annual Meeting ALK secondary mutations (G1202R) (F1174C) (C1156Y) (L1152R)	Presented By Alex Adjei at 2 Response expected to 2 nd generation ALK TKI Ceritinib lectinib (excent	ALK secondary mutations (L1196M) (G1269A) (S1206Y) (I1171T)
e Shaw	Alice Resistance to Ceritinib or Alectinib	ALK secondary mutations (G1202R) (F1174C) (C1156Y) (L1152R) (1151Tinc)	Presented By Alex Adjei at 2 Response expected to 2 nd generation ALK TKI Ceritinib lectinib (except	ALK secondary mutations (L1196M) (G1269A) (S1206Y) (I1171T)

Lorlatinib (PF-06463922) is a potent and selective3rd generation, CNS penetrant ALK/ROS1 TKI active against all Known ALK and ROS1 Resistance Mutations

ALK Mutations With Reported Clinical Resistance to ALK Inhibitors

ALK Version	Crizotinib	Ceritinib	Alectinib	Brigatinib
Wild-type				
T1151TIns	Х			
L1152R	Х	Х		
C1156Y	Х			
I1171N	Х		Х	
F1174C		Х		
F1174L	Х			
F1174V	Х	Х		
L1196M	х			
G1202R	Х	Х	Х	Х
D1203N	Х			Х
S1206F	Х			
S1206Y	Х			
G1269A	Х			

Slide credit: <u>clinicaloptions.com</u>

PD on an ALK-TKI: a possible algorithm for the future?

Modified from Kanaan, et al. Onco Targets Ther 2015