DICHIARAZIONE

Relatore: Ernesto Maranzano

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Consulenza ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazione ad Advisory Board (NIENTE DA DICHIARARE)
- Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA

DICHIARARE)

- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Altro

Sessione (9)

Metastasi scheletriche

Quadri clinici

della malattia ossea metastatica

Ernesto MARANZANO

Direttore Dipartimento di Oncologia S.C. di Radioterapia Oncologica Az. Ospedaliera di **Terni**

SYMPTOMS COMMONLY ASSOCIATED WITH BONE METASTASES (BM)

• Pain

- Impending/Pathologic fracture
- Spinal cord/Nerve root compression

• Hypercalcemia

SYMPTOMS COMMONLY ASSOCIATED WITH BONE METASTASES (BM)

- Impending/Pathologic fractule
- Spinal cord/Nairve Report compression
 Societore Note Report compression
 MATERIALE NOT REPORT Compression
 Hypercalcemia

The most common complaint in patients with bone metastasis (BM) are pain and/or impaired mobility

BONE PAIN IN PATIENT WITH CANCER

Type of pain:

- Localized bone pain
- Pain with a radiating component (i.e., neuropathic pain)

MECHANISMS of Bone Metastatic PAIN (it is not clear):

- Periosteum compression/infiltration/stretching ٠ LENON RIPRODUCI
 - → nociceptor stimulation
 - \rightarrow nerve stimulation
- Chemical mediators* of pain released by BM •

* Prostaglandins, leukotrienes, substance P, bradykinin, interleukins-1 and -6, endothelins and tumor necrosis factor- α (TNF- α)

BONE PAIN IN PATIENT WITH CANCER

Type of pain:

- Pain from extremity lesions tend to be well defined
- **Spinal or pelvic** involvement may produce vague, diffuse symptoms.
- If the lesion is in a **weight-bearing area**, eventually the pain tends to worsen with weight-bearing activity
- Functional pain is caused by the <u>strength weakness of the bone</u> that can no longer support the normal stresses of common daily activities. The development of functional pain may be a marker for bone at risk of fracture
- Mechanical pain is more typically associated with the focal bone loss <u>within lytic lesions</u>

<u>Caveat</u>! \rightarrow it is important to note that radiographically, osteoblastic lesions may also weaken the bone through associated areas of osteolysis. (This increases osteoclastic activity in osteoblastic lesions and therefore also compromises structural integrity).

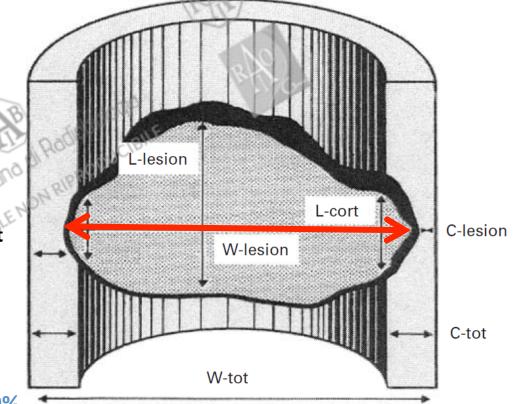
SYMPTOMS COMMONLY ASSOCIATED WITH BONE METASTASES (BM)

Impending or pathologic fractures

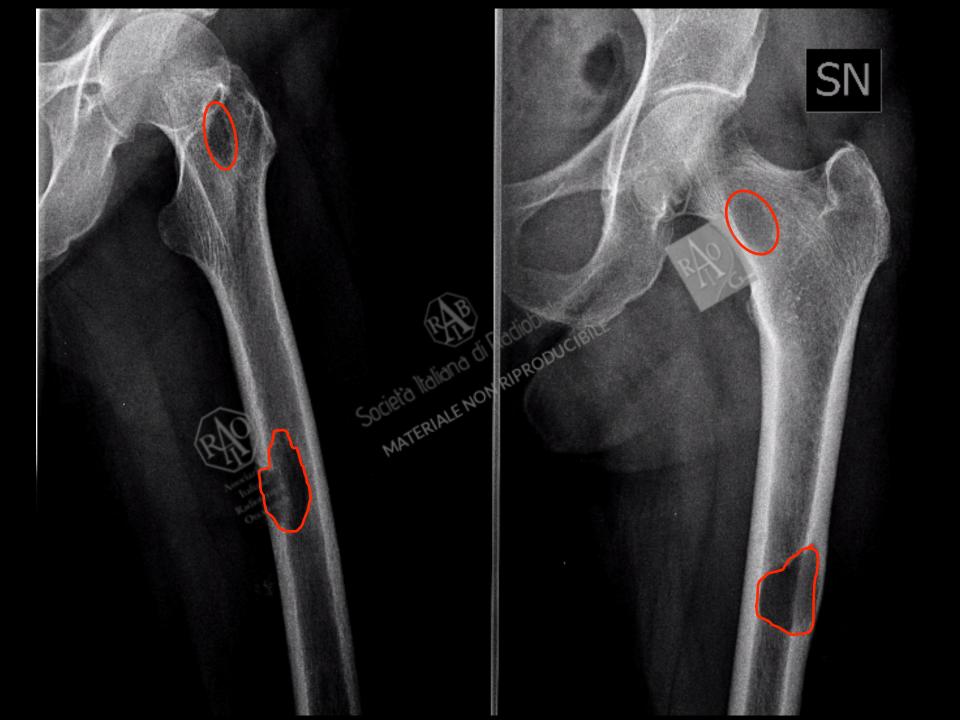
- Progressive <u>involvement of the bone cortex</u> weakens the axial strength of the bone and give rise to instability
- To minimize the risk of pathologic fractures <u>lesions at risk of</u> <u>fracturing must be detected</u> and treated assertively
- <u>Preventive surgery is easier</u> to do for surgeon and has less morbidity and mortality for patient!

JEI- PIALENON

HOW TO PREDICT IMPENDING FRACTURE?



Comparative analysis of <u>risk factors for</u> <u>pathological fracture</u> with femoral metastases


RESULTS BASED ON A RANDOMISED TRIAL OF RADIOTHERAPYDutch bone metastasis study: 110 femoral metastasesY. van der Linden et al. 2004

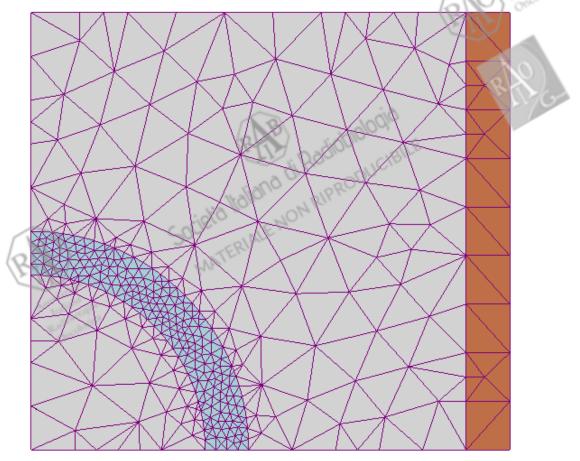
The risk factors studied were:

- 1. increasing pain,
- 2. the size of the lesion,
- 3. radiographic appearance,
- 4. localization,
- 5. transverse/axial/circumferential involvement of the cortex
- 6. the scoring system of Mirels.
- Only axial cortical involvement >30 mm (p = 0.01), and
- Circumferential cortical involvement >50% (p = 0.03) were predictive of fracture. Meas longt

Measurements of metastatic lesions in the femur (mm): largest axial length of the entire lesion (*L-lesion*), largest transverse extension of the lesion (*W-lesion*), largest axial cortical involvement (*L-cort*). Measurement of the femur (mm): largest transverse width of the bone (*W-tot*), maximal thickness of cortex without lesional involvement (*C-tot*) and minimal thickness of cortex with lesional involvement (*C-lesion*).

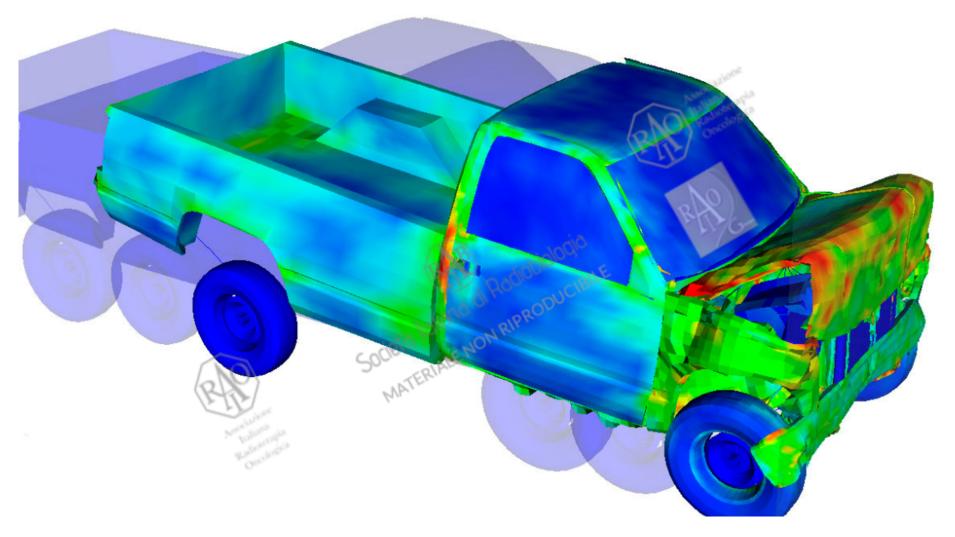
ONCOLOGY

The assessment of the risk of fracture in femora with metastatic lesions


COMPARING CASE-SPECIFIC FINITE ELEMENT ANALYSES WITH PREDICTIONS BY CLINICAL EXPERTS Y. van der Linden et al. 2012

- Lina tect fue used in Lina s estimation logication information on Linas estimation logicate allure, and stress distribution. The has been used in bone imaging to improve bone strength in vivo. FEA is a classic engineering compu parameters such as <u>estimaters</u> loapiers This technolue has been under the technology of the second design and failure analysis
- Mechanical properties are assigned to each finite element high-

Griffith JF & Genant HK: New Imaging Modalities in Bone Current Rheumatology Reports · March 2011


METODO DEGLI ELEMENTI FINITI

Il metodo degli elementi finiti trova origini nelle necessità di risoluzione di problemi complessi di *analisi elastica e strutturale.* Si fonda sull'idea di suddividere il dominio del problema in sottodomini di forma semplice (gli elementi finiti).

Esempio di *griglia di calcolo*: la griglia è più fitta vicino all'oggetto di interesse

METODO DEGLI ELEMENTI FINITI

Esempio di <u>Simulazione</u> tramite analisi agli elementi finiti dell'impatto di un veicolo contro una barriera simmetrica (**crash test**)

ONCOLOGY

The assessment of the risk of fracture in femora with metastatic lesions

COMPARING CASE-SPECIFIC FINITE ELEMENT ANALYSESPREDICTIONS BY CLINICAL EXPERTSY. van der Linden et al. 2012

Finite element analysis

- This technique has been adopted to improve <u>estimation of bone strength</u> using <u>CT bone imaging</u>
- This volumetric quantitative CT is based on segmentation of imaging in <u>CT voxel (i.e., finite element</u>)
- Based on bone density and stress applied, <u>mechanical properties</u> are assigned to each finite element

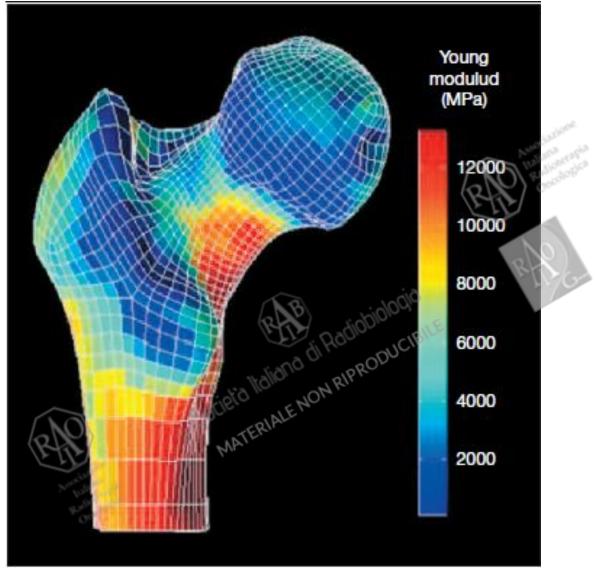
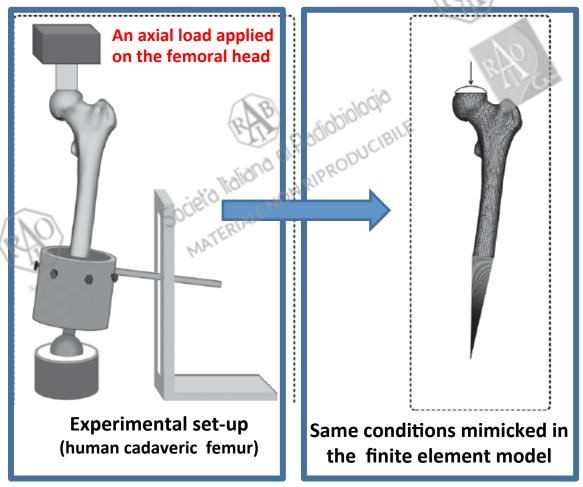


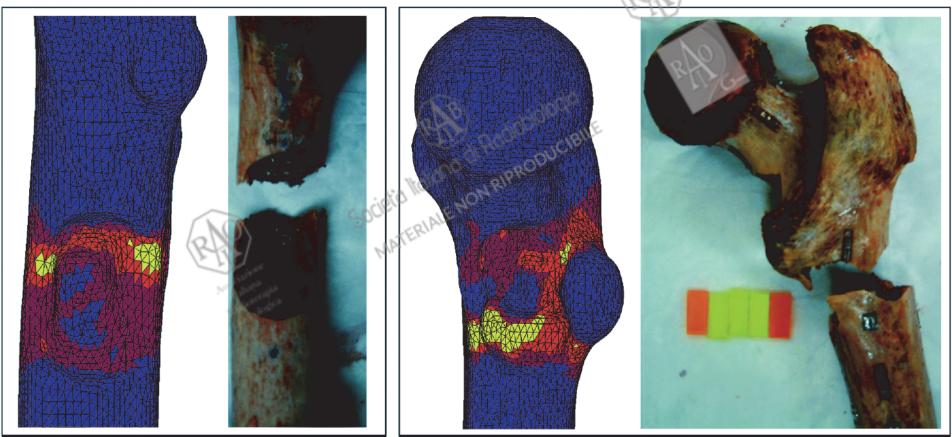
Figure 5. Volumetric quantitative computed tomography provides a basis for <u>finite element analysis</u> of the proximal femur.


Note how <u>stress distribution</u> as related to color code <u>is highest</u> along the infero-medial aspect of the <u>femural neck</u> and <u>proximal third</u>

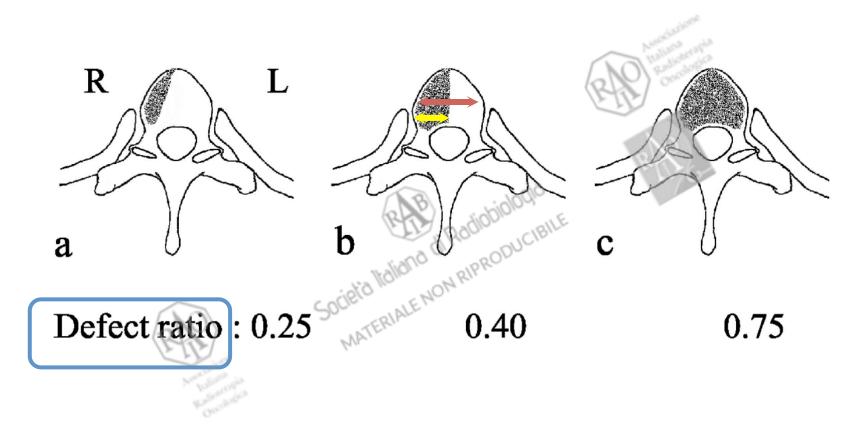
ONCOLOGY

The assessment of the risk of fracture in femora with metastatic lesions

COMPARING CASE-SPECIFIC FINITE ELEMENT ANALYSES WITHPREDICTIONS BY CLINICAL EXPERTSY. van der Linden et al. 2012



ONCOLOGY


The assessment of the risk of fracture in femora with metastatic lesions

COMPARING CASE-SPECIFIC FINITE ELEMENT ANALYSESPREDICTIONS BY CLINICAL EXPERTSY. van der Linden et al. 2012

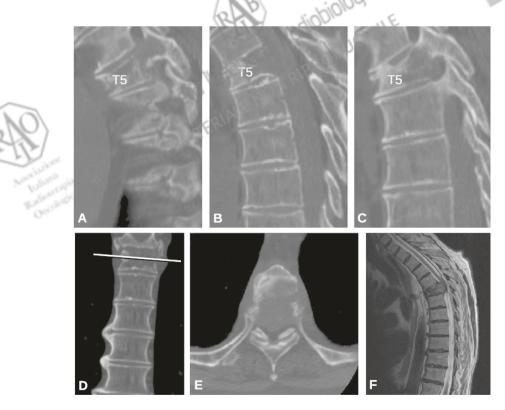
Finite element images predicting two representative fracture locations, showing areas of plastic deformity (indicated in red/orange/yellow), with experimental photographs showing fracture sites corresponding to those predicted by the FE model.

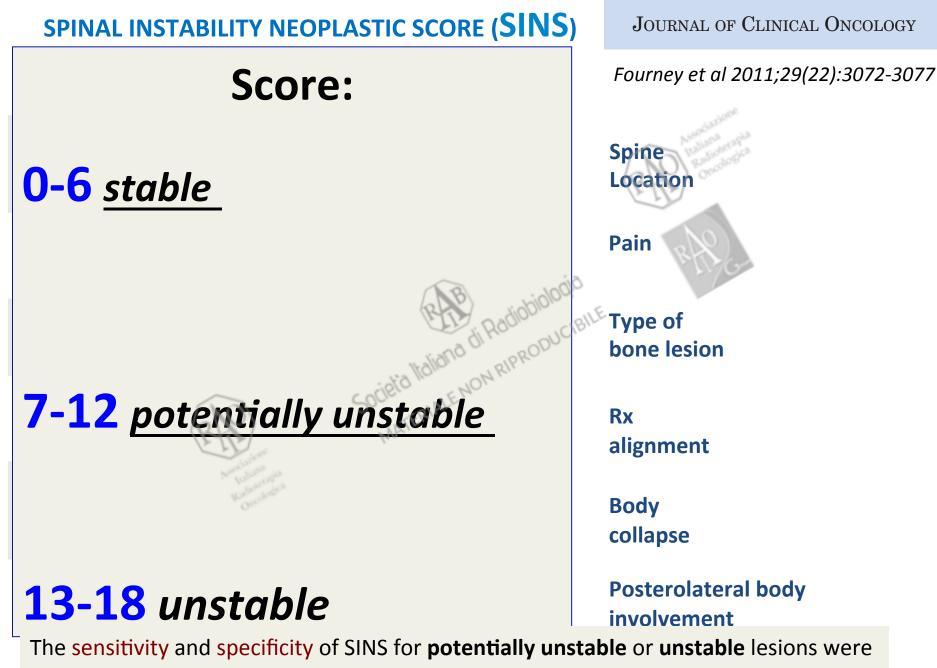
Impending or pathologic fractures in SPINE

- DR= Ø max of lesion (lytic or blastic) / Ø max of vertebral body
- DR \ge 0.5 \rightarrow high risk of patological fracture

Ebihara et al Spine 2004;29(9):994-999

SPINAL INSTABILITY




RESEARCH

Open Access

Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases

Charles G Fisher^{1,16*}, Rowan Schouten², Anne L Versteeg³, Stefano Boriani⁴, Peter Pal Varga⁵, Laurence D Rhines⁶,

95.7% and 79.5%, respectively.

SYMPTOMS COMMONLY ASSOCIATED WITH BONE METASTASES (BM)

• Pain

- Impending/Pathologic fractule
- Spinal cord/Nerve root compression

• Hypercalcemia

Spinal cord/Nerve root compression

Definition

The Princess Margaret Hospital of Toronto, Canada, definition:

The **minimum radiologic evidence** for cord/radicular compression of the theca at the level of back pain <u>also in absence of neurologic</u> <u>symptoms:</u> $\rightarrow \rightarrow \rightarrow$ Patient has a spinal cord compression

Loblaw, JCO '98

A SCORE PREDICTING POSTTREATMENT AMBULATORY STATUS IN PATIENTS IRRADIATED FOR METASTATIC SPINAL CORD COMPRESSION

IJROBP, 2008

DIRK RADES,

Table 1. Results of the multivariate analysis $(N = 2096)$ for post-RT ambulatory status		
	(NO) Radiante	R ^{ean} R ^{ean}
Potential prognostic factor	Relative risk (95% CI)	p
Age	1.09 (0.80–1.48)	0.591
Gender	1.39 (0.92–2.03)	0.124
ECOG performance status	14.28 (4.38-46.54)	< 0.001*
Type of primary tumor	7.75 (3.48–16.06)	< 0.001*
Type of primary tumor Interval between tumor diagnosis and MSCC Other bone metastases at the time of RT Visceral metastases at the	1.81 (1.29–2.54)	0.001*
diagnosis and MSCC delo	401-	
Other bone metastases at the	1.25 (0.92–1.71)	0.162
time of RT		
Visceral metastases at the	1.58 (1.14-2.20)	0.007*
time of RT		
Number of involved vertebrae	1.15 (0.77-1.69)	0.753
Motor function before RT	21.41 (7.72–59.40)	< 0.001*
Time of developing motor	8.20 (5.59–12.05)	< 0.001*
deficits before RT		
RT schedule	1.21 (0.71–2.04)	0.178

Spinal cord/Nerve root compression

Prognostic factors

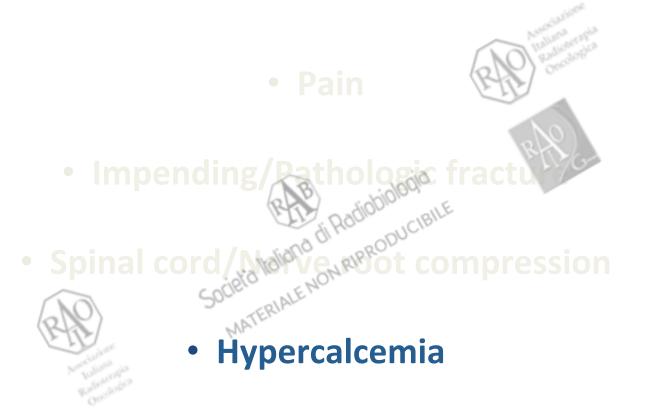
EARLY DIAGNOSIS

ieto Italiano di Radiobiologio PER245 NON RIPRODUCIBILE **EARLY THERAPY** (within 24/48 h from radiologic diagnosis) In patients with <u>known cancer</u>, the presence of <u>back pain</u> cannot be under evaluated, because they can be suggestive of bone metastases until proven otherwise by radiological exams (RX \pm CT and/or MRI).

In particular, <u>back pain and osteolysis</u> are enough to warrant a *full-spine MRI* which allows:

- the diagnosis of BM ± spinal cord compression,
- the numbers of interested sites and
- a correct differential diagnosis between benign and malignant causes of vertebral body compression fracture

Management of cancer pain: ESMO Clinical Practice Guidelines[†] Annals of Oncology 23 (Supplement 7): vii139–vii154, 2012


C. I. Ripamonti¹, D. Santini², E. Maranzano³, M. Berti⁴ & F. Roila⁵, on behalf of the ESMO Guidelines Working Group*

METASTATIC SPINAL CORD COMPRESSION (MSCC)

recommendations

Early diagnosis and prompt therapy are powerful predictors of outcome in MSCC [I, A]. The majority of patients with MSCC should receive RT alone and surgery should be reserved only for selected cases [II, B].

SYMPTOMS COMMONLY ASSOCIATED WITH BONE METASTASES (BM)

Incidence:

- The incidence of hypercalcemia has fallen markedly over the past two decades through the increasingly widespread use of *bisphosphonates* and *chemotherapy*.
- Hypercalcemia traditionally occurs in patients with **breast**, **lung** and **kidney cancers** • and in certain hematological malignancies such as **myeloma** and **lymphoma**.
- In most cases, hypercalcemia is a result of metastatic bone destructions, with • osteolytic lesions present in 80% of cases.

Pathogenesis:

- First, an increased osteoclastic activity, especially in patients with advanced metastatic 1. disease and severe bone destruction at multiple sites.
- Second, a mobilization of skeletal calcium into the blood circulation and stimulation 2. of the kidney to inappropriately reabsorb calcium by parathyroid hormone-related protein (PTHrP) secreted by certain tumors, particularly squamous cell histology.

Symptoms of Hypercalcaemia

Legend

(these colours are based on severity of the hypercalcaen Mild - green. Moderate - blue. Severe **red**.

Cardiovascular

- Fatigue, memory loss, depression,

anxiety, extreme drowsiness, coma,

- Bradycardia

Brain

death

- Cardiac arrhythmias
- Hypertension

Kidneys-

- Kidney failure
- Kidney stones
- Nephrogenic diabetes
- insipidus

-GI tract

 Nausea, vomiting, loss of appetite and constipation

Symptoms:

With mild degrees of hypercalcemia, patients are <u>often asymptomatic</u> but, as the level of calcium rises, patients become progressively <u>dehydrated</u> and may develop symptoms such as

- <u>Neurologic</u> symptoms: memory loss/confusion/, disorientation/ lethargy
- <u>GI</u> symptoms: nausea, vomiting, constipation, loss of appetite
- <u>Cardiovascular</u> symptoms: bradycardia, dysrhythmias, hypertension
- <u>Kidney</u> disease: kidney failure, kidney stones, nephrogenic diabetes insipidus

Treatment:

- Rehydration and
- bisphosphonate therapy

SYMPTOMS COMMONLY ASSOCIATED WITH BONE METASTASES (BM)

Conclusions

- In cancer patients <u>a referred bone pain</u> cannot be under evaluated in radiation oncology clinical practice.
- An accurate <u>clinical assessment</u> is mandatory during follow up.
- <u>Radiological exams</u> -often the only tools that allow a correct diagnosis- should be prescribed <u>without hesitation</u> to give a correct diagnosis and an appropriate therapy.
- Therapeutic choice should be <u>personalized</u> (surgery when necessary)
- A correct approach can improve <u>QoL</u> and sometimes <u>survival</u> of BM patients.

LA CULTURA SENZA TECNICA È UN'ARMA SPUNTATA, LA TECNICA SENZA CULTURA È DISARMATA

ENON

ARTI DEL RACCONTO