
BTK Inhibitors in Indolent NHL

Bruce D. Cheson, M.D. Georgetown University Hospital Lombardi Comprehensive Cancer Center Washington, D.C.

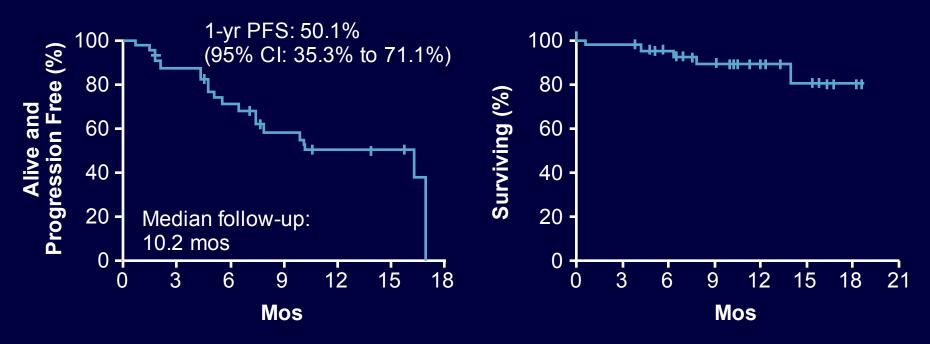
Ibrutinib (PCI-32765), a selective inhibitor of BTK

- Forms a specific bond with cysteine-481 in BTK
- Highly potent BTK inhibition at IC50 = 0.5 nM
- Orally administered with once daily dosing resulting in 24-hr target inhibition
- No cytotoxic effect on T-cells or NK-cells
- In CLL cells promotes apoptosis and inhibits CLL cell migration and adhesion
- Phase I/II data of single agent ibrutinib in relapsed/refractory CLL patients demonstrated a high frequency of durable response (O'Brien ASH 2011)

Phase II Consortium: Ibrutinib Monotherapy in Relapsed/Refractory FL

 Single-agent ibrutinib associated with antitumor responses in relapsed/refractory FL

- ORR: 28%

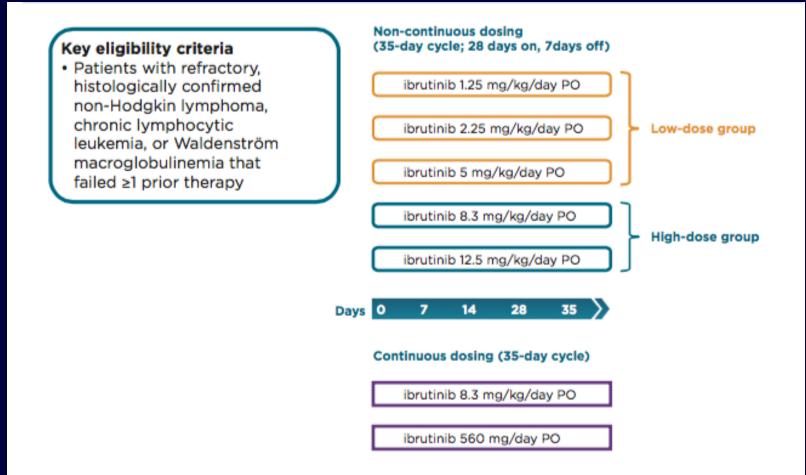

- ORR in rituximab-sensitive disease: 42%
- ORR in rituximab-insensitive disease: 6%

- 1-yr PFS: 50%

Bartlett NL, et al. ASH 2014. Abstract 800.

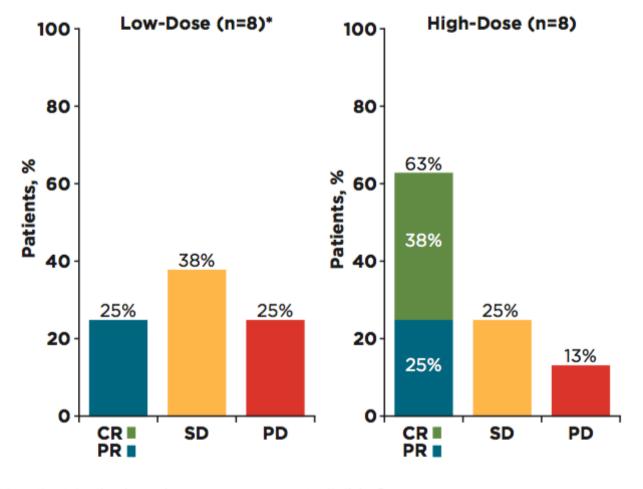
Ibrutinib Monotherapy in Relapsed/ Refractory FL: PFS and OS

PFS

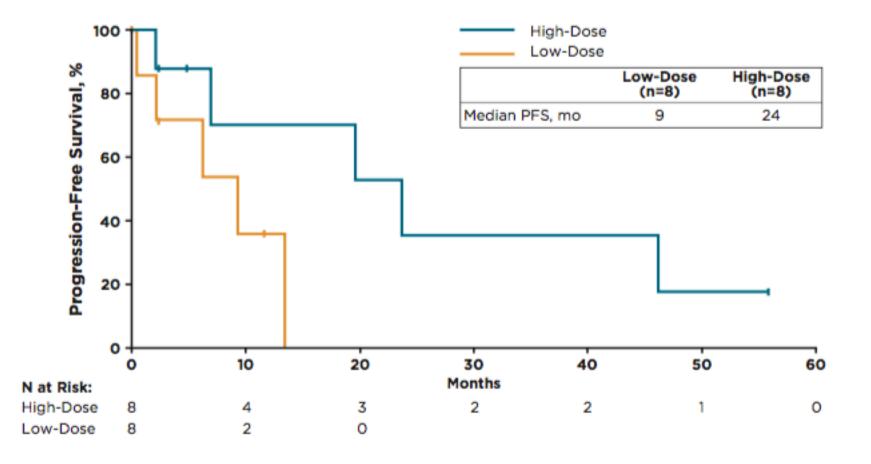

OS

Bartlett NL, et al. ASH 2014. Abstract 800.

The Bruton's Tyrosine Kinase (BTK) Inhibitor Ibrutinib (PCI-32765) is Active and Tolerated in Relapsed Follicular Lymphoma (FL)


Nathan Fowler MD¹, Ranjana Advani MD², Jeff Sharman MD³, Sonali M. Smith MD⁴, Jesse McGreivy MD⁵, Lori Kunkel MD⁵, Vina Troung⁵, Cathy Zhou⁵, Thomas Boyd MD⁶

¹Dept. of Lymphoma/Myeloma, UT MD Anderson Cancer Center, Houston, TX
 ²Dept. of Medicine/Oncology, Stanford University, Stanford, CA
 ³Willamette Valley Center Institute (US Oncology Research), Springfield, OR
 ⁴Hematology/Oncology, University of Chicago Hospitals, Chicago, IL
 ⁵Pharmacyclics, Inc., Sunnyvale, CA
 ⁶North Star Lodge Cancer Center (US Oncology Research), Yakima, WA


- Primary endpoints: dose-limiting toxicities, adverse events (AEs), pharmacokinetic/pharmacodynamic assessments
- Secondary endpoint: tumor response

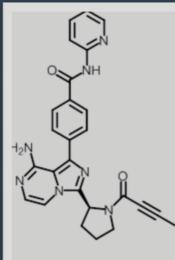
Response to Ibrutinib in R/R Follicular NHL

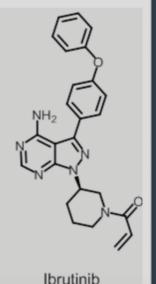
*1 patient in the low-dose group was not eligible for response.

PFS Following Ibrutinib in R/R Follicular NHL

Grade <a> 3 Toxicities of Ibrutinib

Adverse Event (Grade ≥3), n	Low-Dose (n=8)	High-Dose (n=8)
Anemia	1	0
Anxiety	0	1
Blood potassium decreased	1	1
Hypersensitivity	0	1
Hypokalemia	0	1
Hypophosphatemia	1	0
Myelodysplastic syndrome	1	0
Neutrophil count decreased	1	0
Noncardiac chest pain	0	1
Pancytopenia	1	0
Pneumonia	1	0
Vomiting	0	1


Safety: Atrial Fibrillation and Bleeding-Related Adverse Events


- Atrial fibrillation of any grade, was noted more frequently in patients receiving ibrutinib (n=10) compared with of atumumab (n=1)
 - Led to discontinuation of ibrutinib in only 1 patient; patients were ≥60 years old (median age 73); most had predisposing risk factors (a prior history of atrial fibrillation or occurrence in the setting of a pulmonary infection)
- Bleeding-related AEs of any grade, most commonly petechiae, and including ecchymoses, were more common with ibrutinib than with ofatumumab (44% vs. 12%)
 - The vast majority of ibrutinib events were grade 1
 - No difference in severe/major bleeding events (reported in 2 patients randomized to ibrutinib and 3 patients receiving ofatumumab, including 1 ibrutinib patient with a subdural hematoma)
 - Only 1 patient discontinued ibrutinib due to a bleeding AE
 - 37% of patients on the ibrutinib arm and 28% of patients on the ofatumumab arm received either concomitant anti-platelets (excluding NSAIDS) or anticoagulants

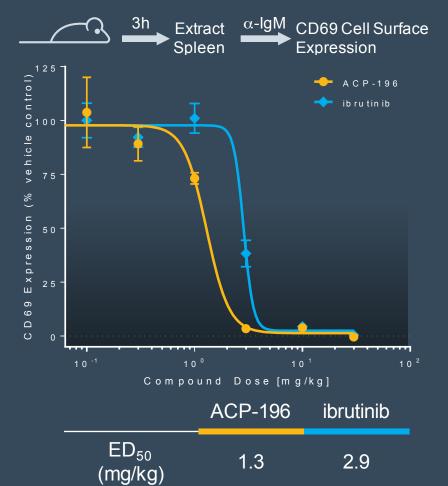
Byrd et al, NEJM 371:213, 2014

Acalabrutinib: A potent and selective 2nd generation Bruton Tyrosine Kinase (Btk) inhibitor

- Acalabrutinib was developed to increase the degree of Btk inhibition
 - Has less avid binding to Btk than first generation Btk inhibitors
 - Very low binding to interleukin-2 inducible T-cell kinase (ITK), TEC protein tyrosine kinase (TEC), and epidermal growth factor receptor (EGFR)
- Acalabrutinib selectively binds with a short half-life allowing twice-daily dosing and near total Btk inhibition
 - Potentially reducing drug resistance
- Acalabrutinib, a second generation Btk inhibitor, appears to improve substantially on the specificity of first generation Btk inhibitors

Byrd, J,et al. *N Engl J Med* 2016; 374:323-332. Wilson, WH. N Engl J Med 2016; 374:386-388.

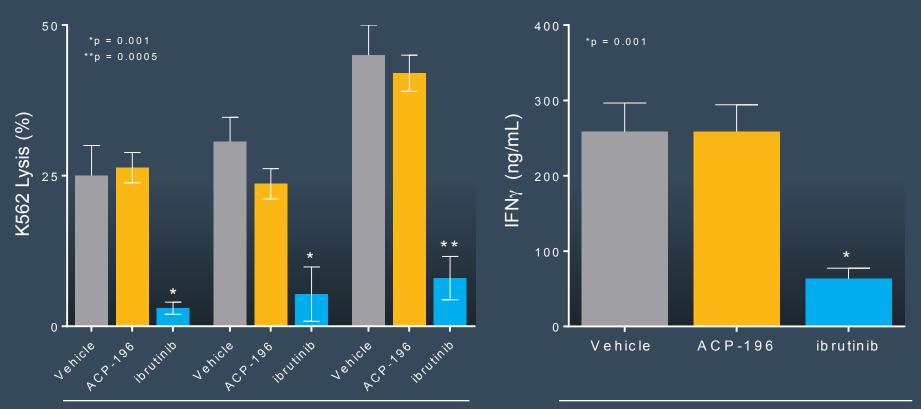
Acalabrutinib


Second-Generation Btk Inhibitor

ACP-196 is a potent, selective irreversible Btk inhibitor

Kinase Inhibition IC₅₀ (nM)

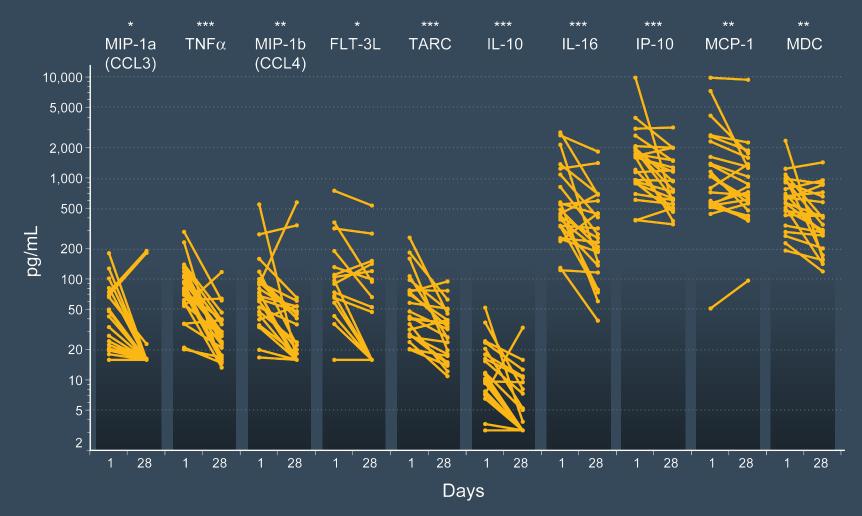
Kinase	ACP-196	ibrutinib
Btk	5.1	1.5
Тес	93	7.0
BMX	46	0.8
Txk	368	2.0
ERBB2	~1000	6.4
EGFR	>1000	5.3
ltk	>1000	4.9
Jak3	>1000	32
Blk	>1000	0.1


Covey AACR 2015. Abstract 2596.

In Vivo Potency

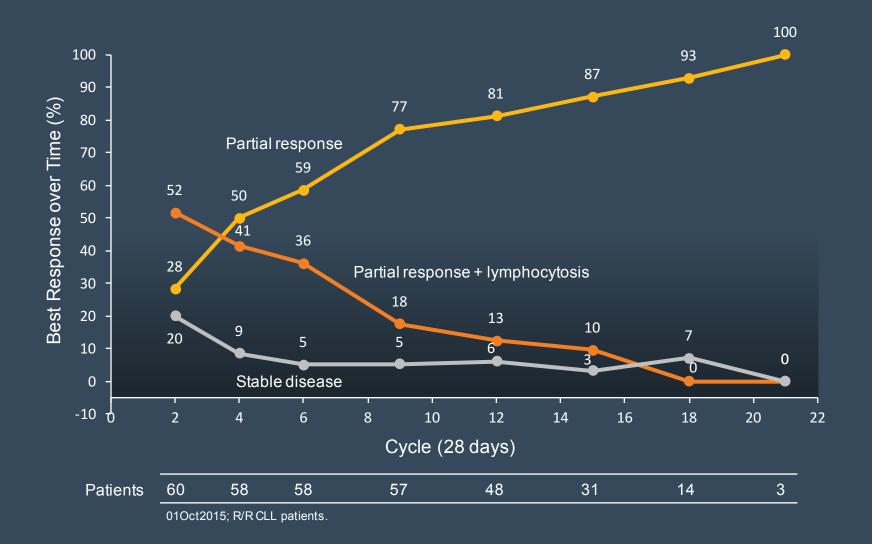
Selectivity Profile (Preclinical)

Non ADCC-mediated NK cell lysis; CD8⁺ T cell IFNγ production


ACP-196 does not inhibit NK cell cytolytic activity[†]

Lannutti AACR 2015. Abstract 408. †Cells were preincubated with ACP-196 and ibrutinib (500nM each), then washed before being assayed.

ACP-196 does not inhibit IFNγ CD8⁺ T cells[‡]


‡Cells were preincubated with ACP-196 and ibrutinib
 (500nM each), then washed before being assayed.
 CD8⁺ T cells were stimulated with anti-TCR Ab to produce IFN_Y.

Cytokines Relevant to BCR Signaling & Tumor Homing Significantly Decrease

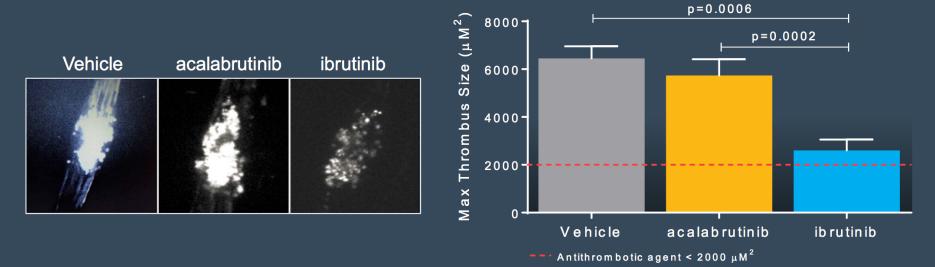
^{*}P<0.05; **P<0.01, ***P<0.001. P-values based on Wilcoxon Signed-Rank test; n = 23.

Best Response Over Time

Adverse Events (Median 14.3 Months of Follow-up)

Reported in ≥5% patients

Adverse Events (Treatment-Related), n (%)	Grade 1-2	Grade 3	N=61
Headache	12 (20)	-	12 (20)
Increased tendency to bruise	7 (12)	_	7 (12)
Petechiae	7 (12)	_	7 (12)
Diarrhea	6 (10)	-	6 (10)
Ecchymosis	5 (8)	_	5 (8)


Reported in ≥20% patients

Adverse Events (Treatment-Emergent), n (%)	Grade 1-2	Grade 3	N=61
Headache	26 (43)	_	26 (43)
Diarrhea	23 (38)	1 (2)	24 (39)
Increased weight	15 (25)	1 (2)	16 (26)
Pyrexia	12 (20)	2 (3)	14 (23)
Upper respiratory tract infection	14 (23)	_	14 (23)
Fatigue	11 (18)	2 (3)	13 (21)
Peripheral edema	13 (21)	_	13 (21)
010ct2015: D/D CI L patiente			

01Oct2015; R/R CLL patients

Acalabrutinib Does Not Impair Thrombus Formation In Vivo

- A side effect of Tec kinase inhibition is bleeding due to impaired platelet aggregation
- Acalabrutinib does not inhibit Tec which results in no impairment of thrombus formation
- METHODS:
 - Fluorescently labelled human platelets were pre-incubated with vehicle, acalabrutinib or ibrutinib.
 - The platelets were then administered to mice.
 - A laser was used to induce vascular injury

Covey, et al. Cancer Res. 2015;2596.

ONO/GS-4059 Project Status

- Licensed from ONO on Dec. 19, 2014¹
 - Development and Commercialization
 - Gilead responsible for development in Gilead Territory (all countries except ONO territory [Asia*])
- Clinical Data
 - Phase 1 monotherapy, conducted in the EU in approximately 90 subjects; demonstrated promising efficacy and safety in CLL, MCL, and DLBCL^{2,3}
- IND for use in hematologic malignancies filed on March 26, 2015
 - Safe to proceed granted April 24, 2015
 - Initial development focused on combination with idelalisib
- Planned Studies
 - GS-US-401-1757 is a planned Phase 1b clinical study to evaluate GS-4059 in combination with idelalisib in patients with relapsed/refractory B-cell malignancies
 - Study began enrolling patients in 2Q 2015

18

Study ONO-4059POE001 (Phase 1b) ONO/GS-4059 has completed a single agent Phase 1 dose escalation study in CLL and NHL

Data is investigator reported and has not been audited or corroborated by Gilead

NHL Response^{2,3}

Disease	Best ORR % (n)
Mantle cell	60% (10)
Non-GCB DLBCL	47% (15)
Waldenstrom's	33% (3)
GCB-DLBCL	0% (2)
Follicular	0% (5)
Marginal zone	0% (1)

- Best Overall Response (BOR):
 - All patients: 21/25 (89%)
 - 17p deletion: 8/9 (89%)
 - Refractory disease: 13/15 (87%)

 Responses in non-GCB DLBCL, MCL, and WM

ONO/GS-4059 Common AEs in CLL and iNHL

- Safety:
 - Wide range of effective and tolerable doses: 40-480 mg QD^{1,2}
 - Reported AEs mainly Grade 1-2 in severity^{1,2}
 - Most common AEs:^{1,2}
 - Infections, hematological abnormalities, skin disorders, and gastrointestinal disorders
 - No Grade 3-4 diarrhea reported³
- Planned Studies
 - GS-US-401-1757 is a planned Phase 1b clinical study to evaluate GS-4059 in combination with idelalisib in patients with relapsed/refractory B-cell malignancies
 - This study is scheduled to begin enrolling patients in 2Q 2015

Phase 2 Study of Ibrutinib Plus Rituximab in Treatment-Naïve FL: Study Design

Key eligibility criteria

- Treatment-naïve, histologically confirmed FL
- Stage II, III, or IV
 disease
- Age ≥18 years
- ≥1 measurable lesion
 ≥2 cm by CT scan
- ECOG PS ≤2

Arm 1: Main Study (N = 60) Ibrutinib + Rituximab Ibrutinib 560 mg PO QD Rituximab 375 mg/m² QW for 4 weeks

Arm 2: Exploratory Arm (N = 20) Ibrutinib + Rituximab Ibrutinib 560 mg PO QD with 2-month lead-in Rituximab 375 mg/m² QW for 4 weeks Until PD or unacceptable toxicity

Primary endpoint: ORR (2007 IWG criteria) Secondary endpoints: DOR, PFS, OS, and safety

Phase 2 Study of Ibrutinib Plus Rituximab in Treatment-Naïve FL: Efficacy

Efficacy Out	comes*	Arm 1: Ibrutinib-R (N=60)
ORR, %		82%
CR		30%
PR		52%
SD		18%
Median time to best response, months (range)		2.7 (1.1-13.6)
DEC	Median, months (range)	NR (0.92-16.6)
PFS	12-month rate (95% CI)	86% (72.8, 93.1)
	Median, months (range)	NR (5.8-19.3)
OS	12-month rate (95% CI)	98% (88.6, 99.8)
Median DOR	, months (range)	NR (0.03-11.9)
Median durati (range)	on of ibrutinib treatment, months *Median follow-up 13.8 months [rang	12.55 (0.8-19.6) e,5.8-19.3].

Fowler et al. ASH 2015. Abstract 470.

Alliance 051103: Phase I Study of Rituximab, Lenalidomide, and Ibrutinib in Previously Untreated Follicular Lymphoma

CS Ujjani¹, SH Jung², B Pitcher², P Martin³, SI Park⁴, KA Blum⁵, SM Smith⁶, MS Czuczman⁷, MS Davids⁸, JP Leonard³, BD Cheson¹

¹Georgetown University, ²Alliance Statistics and Data Center, Duke University, ³Weill Cornell Medical College, ⁴University of North Carolina, ⁵Ohio State University, ⁶University of Chicago, ⁷Celgene Corporation, ⁸Dana-Farber Cancer Institute

American Society of Hematology, December 7, 2015

Response

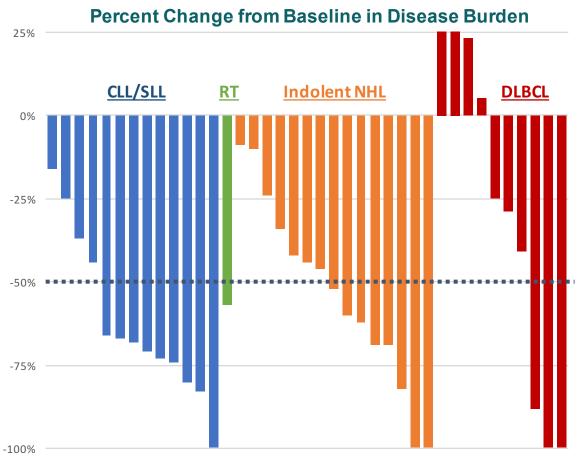
	Overall (n = 22)	DL 0 (n = 3)	DL 1 (n = 3)	DL 2 (n = 16)
ORR	95%	100%	100%	94%
CR*	63%	67%	33%	69%
PR	32%	33%	67%	25%
SD	5%	0	0	6%

- Median time to first response: 2.3 months (1.9-11.1)
- Median time to best response: 5.5 months (1.9-20.2)

* 8 patients who achieved a negative PET/CT did not undergo confirmatory bone marrow biopsy

Safety and Activity of the Chemotherapy-free Triplet of Ublituximab, TGR-1202, and Ibrutinib in Relapsed B-cell Malignancies

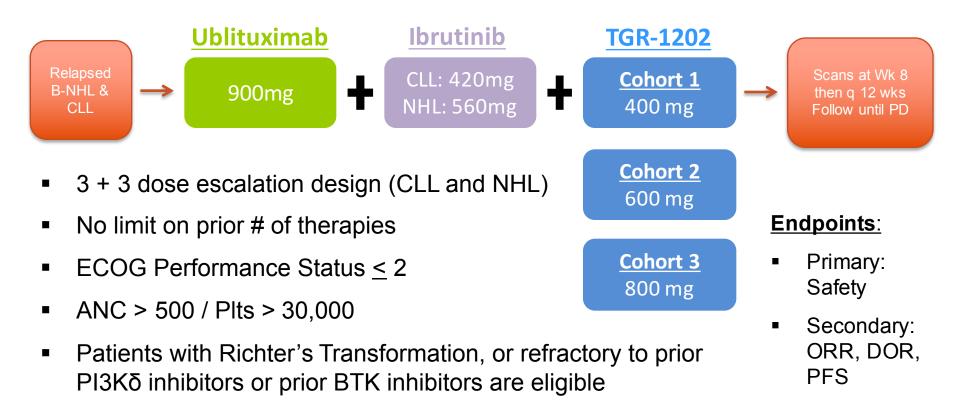
Nathan Fowler, MD¹, Loretta Nastoupil, MD¹, Matthew Lunning, DO², Julie Vose, MD², Tanya Siddiqi, MD³, Christopher Flowers, MD⁴, Jonathon Cohen, MD⁴, Jan Burger, MD, PhD¹, Marshall T. Schreeder, MD⁵,


Myra Miguel, RN¹, Susan Blumel, RN, BSN², Brianna Phye, BS³, Emily K. Pauli, PharmD⁵, Kathy Cutter, RN⁵, Peter Sportelli⁶, Hari P. Miskin, MS⁶, Michael S. Weiss⁶, Swaroop Vakkalanka, PhD⁷, Srikant Viswanadha, PhD⁸ and Susan O'Brien, MD⁹

¹MD Anderson Cancer Center, Houston, TX; ²University of Nebraska Medical Center, Omaha, NE; ³City of Hope National Medical Center, Duarte, CA; ⁴Emory University/Winship Cancer Institute, Atlanta, GA; ⁵Clearview Cancer Institute, Huntsville, AL; ⁶TG Therapeutics, Inc., New York, NY; ⁷Rhizen Pharmaceuticals S.A, La Chaux-de-Fonds, Switzerland; ⁸Incozen Therapeutics, Hyderabad, India; ⁹University of California Irvine Cancer Center, Orange, CA.

TGR-1202 + Ublituximab Doublet

- 55 patients treated to date
 - 60% ≥3 prior therapies
 - 51% refractory to prior therapy
- Combination well tolerated
 - Minimal Gr. 3/4 AE's
- Clinical activity demonstrated in CLL, indolent NHL, and aggressive NHL



Lunning et al, ASCO 2015

Trial Design: TGR-1202 + Ublituximab + Ibrutinib

PRESENTED AT:

All 3 agents started on Day 1

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

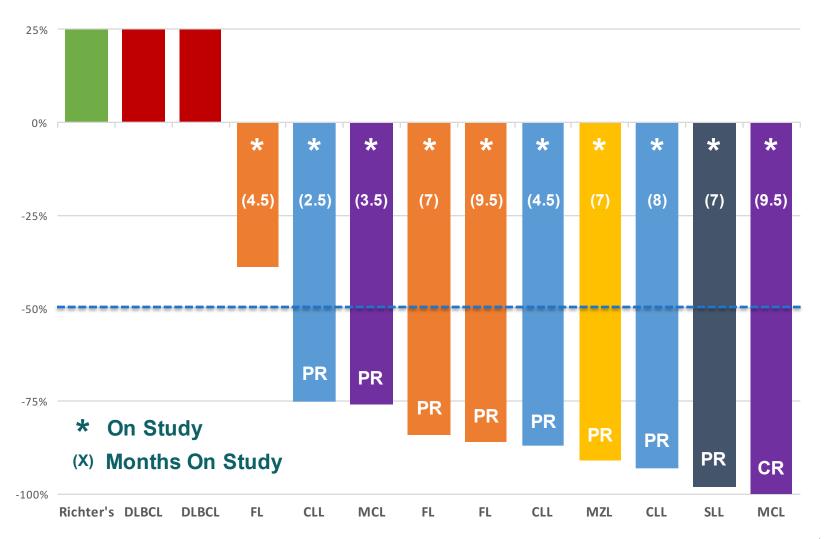
Safety: TGR-1202 + Ublituximab + Ibrutinib

Cohort Summary

CLL and NHL cohorts evaluated separately <u>#</u> NHL # CLL Pts DLT Pts DLT 1: Ublituximab 900mg + Ibrutinib 420/560mg TGR-1202 400 mg 3 0 5 1* 2: + Ublituximab 900mg TGR-1202 600 mg Ibrutinib 420/560mg 4 0 0 0 3: + Ublituximab 900mg TGR-1202 800 mg Ibrutinib 420/560mg 4 0 0 0

*DLT of reactivated varicella zoster – no additional DLT's to date in CLL cohort

- Median time on study = 4 mos (range 1 9 mos)
- DLT in CLL 400 mg cohort
- 800 mg TGR-1202 cohort cleared in NHL


Safety: TGR-1202 + Ublituximab + Ibrutinib

AE's (at least possibly related) in > 1 Patient			
	N=16		
Adverse Event	All Grades n (%)	Grade 3/4 n (%)	
Infusion reaction	4 (25%)	-	
Diarrhea	3 (19%)	-	
Nausea	3 (19%)	-	
Fatigue	3 (19%)	-	
Rash	3 (19%)	-	
Anemia	2 (13%)	-	
Neutropenia	2 (13%)	1 (6%)	
Leukopenia	2 (13%)	1 (6%)	
Insomnia	2 (13%)	-	

Activity in NHL: TGR-1202 + Ublituximab + Ibrutinib

BEST PERCENT CHANGE FROM BASELINE IN DISEASE BURDEN

Meeting

Ongoing Trials With Btk Inhibitors in FL

Drugs	Disease Status	Sponsor
Acalabrutinib (ACP- 196)+pembrolizumab	R/R	Acerta
Acalabrutinib+ACP-319	R/R	Acerta
Acalabrutinib+rituximab	R/R	Acerta
Ono/GS-4059+idelalisib	R/R	Gilead
Ibrutinib+Venetoclax	R/R	Georgetown
Ublituximab+ibrutinib	R/R	TG Therapeutics
Ublituxumab+TGR-1202+ibrutinib	Front-line	TG Therapeutics

Conclusions

- Btk inhibitors are promising agents in B-NHL
- As single agents less active in NHL than CLL
- Combinations with other targeted agents are in development
- Further research would be facilitated by availability of new biomarkers
- Potential to improve patient outcome